Developer’s Guide

Borland®

C++Builder" 6

for Windowse

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the DEPLOY document located in the root directory of your C++Builder product for a complete list of files
that you can distribute in accordance with the C++Builder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

CoPYRIGHT © 1983-2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

CPE1360WW21001 6E4R0102
02030405-98765432 1
PDF

Contents

Chapter 1
Introduction 1-1
What'sin thismanual? 1-1
Manual conventions. 1-3
Developer support services 1-3
Ordering printed documentation. 1-3
Part 1
Programming with C++Builder
Chapter 2
Developing applications with
C++Builder 2-1
Integrated development environment. 2-1
Designing applications 2-2
Creating projects. 2-3
Editingcode 2-3
Compiling applications 2-4
Debugging applications. 2-4
Deploying applications 2-5
Chapter 3
Using the class libraries 3-1
Understanding the class libraries 3-1
Properties, methods, and events 3-2
Properties 3-2
Methods 3-3
Events 3-3
Userevents 3-3
Systemevents. 3-3
Objects, components, and controls. 3-4
TObjectbranch 3-5
TPersistentbranch 3-6
TComponentbranch. 3-7
TControlbranch 3-8
TWinControl/ TWidgetControl branch . . . 3-9
Chapter 4
Using BaseCLX 4-1
Usingstreams 4-2
Using streams to read or write data 4-2
Stream methods for reading and
writing 4-2
Reading and writing components. 4-3
Copying data from one stream to another. . 4-3

Specifying the stream position and size. . . .4-3
Seeking to a specific position. 4-4
Using Position and Size properties4-4

Working withfiles 4-4

Approaches to fileI/O 4-5

Using filestreams 4-5
Creating and opening files using

filestreams 4-6
Using the filehandle 4-6

Manipulating files. 4-7
Deletingafile. 4-7
Findingafile. 4-7
Renamingafile. 49
File date-time routines 4-9
Copyingafile 4-9

Working with ini files and the system
Registry. 4-10
Using TIniFile and TMemIniFile. 4-10
Using TRegistryIniFile 4-11
Using TRegistry 4-12
Working with lists. 4-12

Common list operations 4-13
Adding listitems. 4-13
Deleting listitems 4-14
Accessing listitems 4-14
Rearranging listitems. 4-14

Persistentlists 4-14

Working with string lists. 4-15

Loading and saving string lists 4-15

Creating a new string list. 4-16
Short-term string lists 4-16
Long-term string lists 4-16

Manipulating stringsinalist. 4-17
Counting the stringsinalist 4-18
Accessing a particular string 4-18
Locating items in a string list. 4-18
Iterating through strings in a list. 4-18
Adding astringtoalist. 4-18
Moving a string withinalist 4-18
Deleting a string from a list. 4-19
Associating objects with a string

list..................... 4-19
Working with strings. 4-19
Wide character routines. 4-20

Commonly used routines for

AnsiStrings. L 4-21

Commonly used routines for

null-terminated strings.
Printing
Converting measurements
Performing conversions
Performing simple conversions
Performing complex conversions
Adding new measurement types
Creating a simple conversion family
and adding units
Declare variables
Register the conversion family
Register measurement units
Use the new units
Using a conversion function
Declare variables
Register the conversion family
Register the base unit.

Write methods to convert to and
from the base unit.
Register the other units.
Use the new units
Using a class to manage conversions.
Creating the conversion class
Declare variables
Register the conversion family and
the other units
Use the new units
Creating drawing spaces

Chapter 5
Working with components

Setting component properties
Setting properties at design time
Using property editors
Setting properties at runtime
Calling methods
Working with events and event
handlers
Generating a new event handler
Generating a handler for a component’s
default event
Locating event handlers
Associating an event with an existing
event handler
Using the Sender parameter
Displaying and coding shared

5-4

5-4

5-4
5-5

Associating menu events with event
handlers.
Deleting event handlers
Cross-platform and non-cross-platform
components
Adding custom components to the
Component palette

Chapter 6
Working with controls

Implementing drag and drop in controls. . . .
Starting a drag operation
Accepting dragged items
Dropping items
Ending a drag operation
Customizing drag and drop with a

drag object
Changing the drag mouse pointer.

Implementing drag and dock in controls. . . .

Making a windowed control a docking

Making a control a dockable child.
Controlling how child controls are
docked
Controlling how child controls are
undocked.
Controlling how child controls respond
to drag-and-dock operations
Working with text in controls
Setting text alignment.
Adding scroll bars at runtime
Adding the clipboard object
Selecting text
Selecting all text
Cutting, copying, and pasting text
Deleting selected text
Disabling menu items.
Providing a pop-up menu
Handling the OnPopup event
Adding graphics to controls
Indicating that a control is owner-
drawn
Adding graphical objects to a string
list.
Adding images to an application
Adding images to a string list
Drawing owner-drawn items.
Sizing owner-draw items
Drawing owner-draw items

ii

Chapter 7
Building applications, components,
and libraries

Creating applications
GUI applications
User interface models
SDI applications.
MDI applications
Setting IDE, project, and compilation
options
Programming templates
Console applications
Using the VCL and CLX in console
applications
Service applications
Service threads
Service name properties
Debugging service applications
Creating packages and DLLs
When to use packages and DLLs
Using DLLs in C++Builder
Creating DLLs in C++Builder
Creating DLLs containing VCL and CLX
components
Linking DLLs
Writing database applications
Distributing database applications
Creating Web server applications
Using Web Broker
Creating WebSnap applications.
Using InternetExpress
Creating Web Services applications
Writing applications using COM.
Using COM and DCOM
Using MTS and COM+
Using data modules
Creating and editing standard
datamodules
Naming a data module and its
unit file
Placing and naming components
Using component properties and
events in a datamodule
Creating business rules in a data
module.
Accessing a data module froma form
Adding a remote data module to an
application server project
Using the Object Repository

iii

Sharing items within a project. 7-24
Adding items to the Object Repository . . . 7-24
Sharing objects in a team
environment 7-24
Using an Object Repository item in
aproject. oL 7-25
Copyinganitem 7-25
Inheriting anitem 7-25
Usinganitem. 7-25
Using project templates. 7-25
Modifying shared items 7-26
Specifying a default project, new form,
and mainform., 7-26
Enabling Help in applications. 7-26
Help system interfaces 7-27
Implementing ICustomHelpViewer. 7-28
Communicating with the Help
Manager 7-28
Asking the Help Manager for
information. 7-28
Displaying keyword-based Help 7-29
Displaying tables of contents. 7-30
Implementing IExtendedHelp
Viewer 7-30
Implementing IHelpSelector. 7-31
Registering Help system objects. 7-32
Registering Help viewers. 7-32
Registering Help selectors 7-32
Using Help in a VCL Application. 7-33
How TApplication processes VCL
Help. 7-33
How VCL controls process Help. 7-33
Using Help in a CLX Application. 7-34
How TApplication processes CLX
Help. 7-34
How CLX controls process Help. 7-34
Calling a Help system directly 7-35
Using IHelpSystem 7-35
Customizing the IDE Help system 7-35
Chapter 8

Developing the application user
interface

Controlling application behavior 8-1
Working at the application level. 8-2
Handling the screen. 8-2

Settingup forms. 8-2
Using the mainform 8-2
Hiding the main form. 8-3

Adding forms
Linking forms
Managing layout
Usingforms.
Controlling when forms reside in
memory
Displaying an auto-created form
Creating forms dynamically
Creating modeless forms such as
windows
Creating a form instance using a local
variable
Passing additional arguments to forms . . .
Retrieving data from forms
Retrieving data from modeless
forms
Retrieving data from modal forms . . .
Reusing components and groups of
components
Creating and using component templates . .
Working with frames
Creating frames
Adding frames to the Component
palette
Using and modifying frames
Sharing frames
Developing dialog boxes
Using open dialog boxes.
Organizing actions for toolbars and

Whatisanaction?

Setting up action bands

Creating toolbars and menus

Adding color, patterns, or pictures

to menus, buttons, and toolbars
Adding icons to menus and

Creating toolbars and menus that

users can customize.

Hiding unused items and categories
in action bands
Using action lists
Setting up action lists
What happens when an action fires
Responding with events
How actions find their targets
Updating actions
Predefined action classes
Writing action components

8-5
8-6

8-7
8-7
8-8

8-8

.8-10

8-12

.8-12

8-13
8-13

8-14
8-14
8-15
8-15
8-16

8-16
8-18
8-18
8-19

8-20

8-21

8-22

8-22
8-23
8-23
8-24
8-24
8-26
8-26
8-27
8-28

Registering actions
Creating and managing menus
Opening the Menu Designer
Building menus
Naming menus.
Naming the menu items
Adding, inserting, and deleting menu

Adding separator bars
Specifying accelerator keys and
keyboard shortcuts.
Creating submenus
Creating submenus by demoting
existing menus
Moving menu items
Adding images to menu items
Viewing the menu
Editing menu items in the Object
Inspector
Using the Menu Designer context
menu
Commands on the context menu.
Switching between menus at design
time
Using menu templates
Saving a menu as a template
Naming conventions for template
menu items and event handlers
Manipulating menu items at runtime. . . .
Merging menus
Specifying the active menu: Menu
property
Determining the order of merged
menu items: GroupIndex property. .
Importing resource files
Designing toolbars and cool bars
Adding a toolbar using a panel
component
Adding a speed button to a panel . . .
Assigning a speed button’s glyph . . .
Setting the initial condition of a
speed button
Creating a group of speed buttons. . .
Allowing toggle buttons
Adding a toolbar using the toolbar
component
Adding a tool button
Assigning images to tool buttons

iv

8-41

. 8-41

8-42
8-42

8-43

. 8-44
. 8-44

8-44

. 845

8-45

8-45
8-46
8-46

Setting tool button appearance and
initial conditions
Creating groups of tool buttons.
Allowing toggled tool buttons
Adding a cool bar component
Setting the appearance of the cool
bar
Responding to clicks
Assigning a menu to a tool button . . .
Adding hidden toolbars
Hiding and showing toolbars.

Chapter 9
Types of controls

Text controls
Editcontrols.
Edit control properties.

Memo and rich edit controls.
Text viewing controls (CLX only).
Labels

Specialized input controls.
Scroll bars
Track bars
Up-down controls (VCL only)
Spin edit controls (CLX only)
Hot key controls (VCL only)
Splittercontrols.

Buttons and similar controls
Button controls
Bitmap buttons
Speed buttons.
Checkboxes.
Radiobuttons.
Toolbars
Coolbars (VCLonly).

Listcontrols.
List boxes and check-list boxes
Combo boxes
Treeviews.
List views
Date-time pickers and month

calendars (VCLonly).

Grouping controls
Group boxes and radio groups
Panels
Scroll boxes
Tab controls
Page controls
Headercontrols.

8-46
8-47
8-47
8-47

8-48
8-48

.8-48

8-49
8-49

9-4

9-5

Display controls.
Status bars
Progressbars.
Help and hint properties

Grids
Draw grids
String grids.

Value list editors (VCLonly).

Graphiccontrols.

Chapter 10
Working with graphics and
multimedia

Overview of graphics programming
Refreshing the screen
Types of graphic objects
Common properties and methods

ofCanvas.
Using the properties of the Canvas
object
Using pens
Using brushes
Reading and setting pixels
Using Canvas methods to draw graphic
objects.
Drawing lines and polylines
Drawing shapes
Handling multiple drawing objects
in your application
Keeping track of which drawing
tooltouse.
Changing the tool with speed
buttons
Using drawing tools.
Drawing on a graphic.
Making scrollable graphics
Adding an image control
Loading and saving graphics files.
Loading a picture from a file
Saving a picturetoafile.
Replacing the picture
Using the clipboard with graphics
Copying graphics to the
clipboard

Cutting graphics to the clipboard. . . . 10-22
Pasting graphics from the

clipboard. 10-22
Rubber banding example 10-23
Responding to themouse 10-24
Responding to a mouse-down
action. L. 10-25
Adding a field to a form object
| to track mouse actions 10-26
Refining line drawing 10-27
Working with multimedia 10-29
Adding silent video clips to an
application. 10-29
Example of adding silent video
clips. 10-30
Adding audio and/or video clips to
an application. 10-31
Example of adding audio and/or
video clips (VCLonly) 10-33
Chapter 11
Writing multi-threaded applications 11-1
Defining thread objects 111
Initializing the thread 11-2
Assigning a default priority 11-2
Indicating when threads are freed11-3
Writing the thread function. 11-4
Using the main VCL/CLX thread. 11-4
Using thread-local variables. 11-5
Checking for termination by other
threads 11-6
Handling exceptions in the thread
function 11-6
Writing clean-upcode 11-7
Coordinating threads 11-7
Avoiding simultaneous access 11-7
Locking objects 11-7
Using critical sections 11-8
Using the multi-read exclusive-write
synchronizer. 11-8
Other techniques for sharing
MEeMOLY o vt vt e e et 11-9
Waiting for other threads 11-9
Waiting for a thread to finish
executing. 11-9
Waiting for a task to be
completed 11-10
Executing thread objects 11-11
Overriding the default priority 11-11

vi

Starting and stopping threads 11-11
Debugging multi-threaded applications11-12
Namingathread. 11-12
Converting an unnamed thread to a named
thread 11-12
Assigning separate names to similar
threads 11-13
Chapter 12
Exception handling 121
C++exceptionhandling 12-1
Exception handling syntax. 12-1
Thetryblock 12-2
The throw statement. 12-2
The catch statement 12-3
Rethrowing exceptions 12-4
Exception specifications 12-4
Unwinding exceptions 12-5
Safepointers 12-5
Constructors in exception handling. 12-6
Handling uncaught and unexpected
exceptions 12-6
Structured exceptions under Win32. 12-6
Syntax of structured exceptions 12-7
Handling structured exceptions 12-8
Exceptionfilters 12-8
Mixing C++ with structured
exceptions 12-10
C-based exceptions in C++ program
example. 12-11
Defining exceptions. 12-12
Raising exceptions. 12-12
Terminationblocks 12-13
C++Builder exception handling
options 12-14
VCL/CLX exception handling 12-15
Differences between C++ and
VCL/CLX exception handling 12-15
Handling operating system exceptions . . 12-15
Handling VCL and CLX exceptions. . . . 12-16
VCL and CLX exception classes 12-16
Portability considerations 12-18

Chapter 13
C++ language support for the
VCL and CLX

C++ and Object Pascal object models.
Inheritance and interfaces

Using interfaces instead of multiple
inheritance
Declaring interface classes
IUnknown and IInterface
Creating classes that support
IUnknown
Interfaced classes and lifetime
management
Object identity and instantiation
Distinguishing C++ and Object
Pascal references
Copying objects
Objects as function arguments
Object construction for C++Builder
VCL/CLX classes
C++ object construction
Object Pascal object construction
C++Builder object construction
Calling virtual methods in base class
constructors
Object Pascal model
C++ model
C++Builder model
Example: calling virtual methods. . . .
Constructor initialization of data
members for virtual functions
Object destruction
Exceptions thrown from
constructors
Virtual methods called from
destructors
AfterConstruction and Before
Destruction
Class virtual functions
Support for Object Pascal data types
and language concepts
Typedefs
Classes that support the Object
Pascal language
C++ language counterparts to the
Object Pascal language
Var parameters
Untyped parameters
Open arrays
Calculating the number of
elements
Temporaries
array of const
OPENARRAY macro

vii

EXISTINGARRAY macro
C++ functions that take open array
arguments.
Types defined differently
Boolean data types
Char data types
Delphi interfaces.
Resource strings
Default parameters
Runtime type information
Unmapped types
6-byte Real types
Arrays as return types of
functions
Keyword extensions.
_ classid
_ closure
__property
_published.
The __declspec keyword extension
__declspec(delphiclass)
__declspec(delphireturn)
__declspec(delphirtti)
__declspec(dynamic)
__declspec(hidesbase)
__declspec(package)
__declspec(pascalimplementation) . .
__declspec(uuid)

Chapter 14
Developing cross-platform
applications

Creating cross-platform applications
Porting Windows applications to Linux
Porting techniques
Platform-specific ports
Cross-platform ports
Windows emulation ports
Porting your application
CLX versus VCL
What CLX does differently
Look and feel
Styles
Variants
Registry
Other differences
Missing in CLX
Features that will not port directly
CLX and VCL unit comparison

Differences in CLX object

constructors 14-11
Handling system and widget
events 14-12
Sharing source files between
Windowsand Linux 14-12
Environmental differences between
Windowsand Linux 14-13
Directory structure on Linux 14-15
Writing portablecode 14-15
Using conditional directives. 14-16
Emitting messages 14-17
Including inline assembler code. 14-18
Programming differences on Linux 14-19
Cross-platform database applications 14-19
dbExpress differences 14-20
Component-level differences 14-21
User interface-level differences 14-21
Porting database applications to
Linux. 14-22
Updating data in dbExpress
applications 14-24
Cross-platform Internet applications 14-25
Porting Internet applications to
Linux. 14-26
Chapter 15
Working with packages and
components 15-1
Why use packages? 15-2
Packages and standard DLLs 15-2
Runtime packages 15-3
Using packages in an application. 15-3
Dynamically loading packages 15-4
Deciding which runtime packages
touse. e 15-4
Custom packages. 15-4
Design-time packages 15-5
Installing component packages. 15-5
Creating and editing packages 15-6
Creating apackage. 15-6
Editing an existing package. 15-7
Package source files and project
optionsfiles 15-8
Packaging components. 15-8
Understanding the structure of
apackage 15-9
Naming packages. 15-9
Requireslist. 15-9

Contains list
Building packages.
Package-specific compiler
directives
Using the command-line compiler
andlinker.
Package files created by building . . .
Deploying packages
Deploying applications that use
packages
Distributing packages to other
developers
Package collection files

Chapter 16
Creating international
applications

Internationalization and localization
Internationalization.
Localization

Internationalizing applications
Enabling application code

Character sets
OEM and ANSI character sets
Multibyte character sets.
Wide characters
Including bi-directional functionality

in applications

BiDiMode property
Locale-specific features

Designing the user interface

Text
Graphic images
Formats and sort order
Keyboard mappings.

Isolating resources.
Creating resource DLLs.
Using resource DLLs
Dynamic switching of resource
DLLs

Localizing applications.

Localizing resources.

Chapter 17
Deploying applications
Deploying general applications
Using installation programs
Identifying application files
Application files

Packagefiles. 17-3
Mergemodules 17-3
ActiveXcontrols 17-5
Helper applications. 17-5
DLLlocations 17-5
Deploying CLX applications 17-6
Deploying database applications. 17-6
Deploying dbExpress database
applications 17-7
Deploying BDE applications 17-8
Borland Database Engine 17-8
SQLLinks 17-9
Deploying multi-tiered database
applications (DataSnap) 17-10
Deploying Web applications 17-10
Deploying to Apache servers 17-10
Programming for varying host
environments. 17-11
Screen resolutions and color depths 17-12
Considerations when not
dynamically resizing 17-12
Considerations when dynamically
resizing forms and controls 17-12
Accommodating varying color
depths 17-13
Fonts. 17-14
Operating systems versions. 17-14
Software license requirements 17-15
DEPLOY. 17-15
README 17-15
No-nonsense license agreement 17-15
Third-party product documentation 17-15

Part II
Developing database applications

Chapter 18

Designing database applications 18-1
Using databases 18-1
Types of databases 18-2
Database security. 18-3
Transactions. 18-4

Referential integrity, stored procedures,
and triggers 18-5
Database architecture 18-5
General structure. 18-6
The user interface form. 18-6
Thedatamodule 18-6

Connecting directly to a database
server
Using a dedicated file on disk
Connecting to another dataset
Connecting a client dataset to another
dataset in the same application
Using a multi-tiered architecture. . . .
Combining approaches
Designing the user interface
Analyzing data
Writing reports.

Chapter 19
Using data controls

Using common data control features
Associating a data control with a
dataset
Changing the associated dataset

at runtime
Enabling and disabling the data
source
Responding to changes mediated
by the data source
Editing and updating data
Enabling editing in controls on
user entry
Editing datainacontrol.
Disabling and enabling data display
Refreshing data display
Enabling mouse, keyboard, and timer
events
Choosing how to organize the data
Displaying a single record
Displaying data as labels
Displaying and editing fields in an
edit box
Displaying and editing text in a
memo control
Displaying and editing text in a rich
edit memo control
Displaying and editing graphics
fields in an image control
Displaying and editing data in list
and combo boxes
Handling Boolean field values with
check boxes
Restricting field values with radio
controls
Displaying multiple records

ix

Viewing and editing data with

TDBGrid.

Using a grid control in its default

state L.
Creating a customized grid

Understanding persistent

columns
Creating persistent columns.
Deleting persistent columns.

Arranging the order of persistent

columns

Setting column properties at

designtime
Defining a lookup list column. . . .
Putting a button in a column

Restoring default values to a

column.
Displaying ADT and array fields. . . .
Setting grid options
Editinginthegrid
Controlling grid drawing

Responding to user actions at

runtime

Creating a grid that contains other

data-aware controls
Navigating and manipulating records. . .

Choosing navigator buttons to

display.

Hiding and showing navigator

buttons at design time

Hiding and showing navigator

buttons at runtime
Displaying fly-over help.

Using a single navigator for multiple

datasets

Chapter 20
Using decision support
components

Overview
Aboutcrosstabs
One-dimensional crosstabs
Multidimensional crosstabs.

Guidelines for using decision support

components.

Using datasets with decision support

components.,

Creating decision datasets with

TQuery or TTable.

19-15

19-15
19-16

19-17
19-17
19-18
19-19
19-19
19-20
19-21
19-21
19-22
19-24
19-25
19-25
19-26

19-27
19-28

19-29

19-29

19-29
19-30

19-30

Creating decision datasets with the

Decision Query editor.
Using decisioncubes
Decision cube properties and events
Using the Decision Cube editor

Viewing and changing dimension

settings

Setting the maximum available

dimensions and summaries.

Viewing and changing design

options

Using decision sources.
Propertiesand events.
Using decision pivots.
Decision pivot properties.
Creating and using decision grids
Creating decision grids
Using decisiongrids

Opening and closing decision

gridfields.

Reorganizing rows and columns

indecisiongrids

Drilling down for detail in decision

grids.

Limiting dimension selection in

decisiongrids.
Decision grid properties
Creating and using decision graphs
Creating decision graphs.
Using decision graphs
The decision graph display.
Customizing decision graphs

Setting decision graph template

defaults

Customizing decision graph

SEries. v v i i

Decision support components at

runtime.
Decision pivots at runtime
Decision grids at runtime.
Decision graphs at runtime.

Decision support components and

memorycontrol L.

Setting maximum dimensions,

summaries, and cells
Setting dimension state.
Using paged dimensions

Chapter 21

Connecting to databases

Using implicit connections

Controlling connections.
Connecting to a database server

Disconnecting from a database server

Controlling serverlogin.
Managing transactions
Starting a transaction
Ending a transaction.
Ending a successful transaction.
Ending an unsuccessful
transaction.
Specifying the transaction isolation
level
Sending commands to the server
Working with associated datasets
Closing all datasets without dis-
connecting from the server
Iterating through the associated
datasets
Obtaining metadata
Listing available tables.
Listing the fields in a table
Listing available stored procedures . . .
Listing available indexes
Listing stored procedure parameters. . . .

Chapter 22

Understanding datasets
Using TDataSet descendants
Determining dataset states
Opening and closing datasets
Navigating datasets
Using the First and Last methods
Using the Next and Prior methods.
Using the MoveBy method
Using the Eof and Bof properties.
Eof
Bof
Marking and returning to records
The Bookmark property
The GetBookmark method.

The GotoBookmark and Bookmark
Valid methods.
The CompareBookmarks method. . . .
The FreeBookmark method
A bookmarking example.
Searching datasets

21-12
21-13
21-13
21-13

. 21-14

21-14
21-14

xi

Using Locate. 22-10
UsingLookup 22-11
Displaying and editing a subset of data
using filters L 22-12
Enabling and disabling filtering 22-13
Creating filters. 22-13
Setting the Filter property. 22-14
Writing an OnFilterRecord event
handler 22-15
Switching filter event handlers at
runtime 22-15
Setting filter options. 22-15
Navigating records in a filtered
dataset 22-16
Modifyingdata 22-17
Editing records. 22-17
Addingnew records 22-18
Inserting records. 22-19
Appending records 22-19
Deletingrecords. 22-19
Postingdata 22-20
Canceling changes. 22-21
Modifying entire records 22-21
Calculating fields 22-22
Types of datasets 22-23
Using table type datasets. 22-25
Advantages of using table type
datasets. 22-25
Sorting records with indexes. 22-26
Obtaining information about
indexes 22-26
Specifying an index with
IndexName 22-26
Creating an index with IndexField-
Names. 22-27
Using Indexes to search for
records L. 22-27
Executing a search with Goto
methods. 22-28
Executing a search with Find
methods. 22-29
Specifying the current record after
asuccessfulsearch. 22-29
Searching on partialkeys 22-29

Repeating or extending a search 22-29

Limiting records with ranges 22-30
Understanding the differences

between ranges and filters 22-30

Specifyingranges 22-30

Modifying a range
Applying or canceling a range
Creating master/detail relationships. . . .
Making the table a detail of another
dataset
Using nested detail tables
Controlling Read /write access to
tables. L
Creating and deleting tables
Creating tables
Deleting tables
Emptying tables
Synchronizing tables.
Using query-type datasets
Specifying the query
Specifying a query using the
SQL property
Specifying a query using the
CommandText property
Using parameters in queries

Supplying parameters at runtime. . .
Establishing master/detail relationships
using parameters
Preparing queries.
Executing queries that don’t return a
result set
Using unidirectional resultsets.
Using stored procedure-type datasets.
Working with stored procedure

Using parameters at runtime
Preparing stored procedures
Executing stored procedures that don’t

return a result set
Fetching multiple result sets

Chapter 23
Working with field components

Dynamic field components
Persistent field components
Creating persistent fields
Arranging persistent fields
Defining new persistent fields
Defining a data field
Defining a calculated field.

22-43
22-43

22-44

. 22-45

22-46
22-47

22-47
22-48
22-48

22-50
22-50
22-52
22-52

22-53
22-53

Programming a calculated field
Defining a lookup field
Defining an aggregate field.
Deleting persistent field
components
Setting persistent field properties
and events
Setting display and edit properties
atdesigntime.
Setting field component properties
atruntime.
Creating attribute sets for field
components.
Associating attribute sets with field
components.
Removing attribute associations
Controlling and masking user

Using default formatting for numeric,
date, and time fields
Handling events
Working with field component methods
at runtime
Displaying, converting, and accessing
fieldvalues.
Displaying field component values
in standard controls
Converting field values.
Accessing field values with the default
dataset property
Accessing field values with a dataset’s
Fields property.
Accessing field values with a dataset’s
FieldByName method.
Setting a default value for a field
Working with constraints
Creating a custom constraint.
Using server constraints
Using object fields
Displaying ADT and array fields
Working with ADT fields.
Using persistent field
components.
Using the dataset’s FieldByName
method
Using the dateset’s Field Values

property.
Using the ADT field’s FieldValues

property.

Using the ADT field’s Fields
property
Working with array fields
Using persistent fields
Using the array field’s FieldValues
property
Using the array field’s Fields
property
Working with dataset fields
Displaying dataset fields.
Accessing data in a nested
dataset
Working with reference fields.
Displaying reference fields
Accessing data in a reference
field

Chapter 24
Using the Borland Database
Engine
BDE-based architecture
Using BDE-enabled datasets
Associating a dataset with database
and session connections
Caching BLOBs
Obtaining a BDE handle
Using TTable
Specifying the table type for local
tables
Controlling read /write access to
local tables
Specifying a dBASE index file
Renaming local tables

Importing data from another table

Using TQuery.
Creating heterogeneous queries.
Obtaining an editable result set
Updating read-only result sets

Using TStoredProc
Binding parameters.
Working with Oracle overloaded

stored procedures

Connecting to databases with

TDatabase
Associating a database component
with a session
Understanding database and session
component interactions
Identifying the database

xiii

Opening a connection using
TDatabase.
Using database components in data
modules
Managing database sessions
Activating a session
Specifying default database
connection behavior
Managing database connections
Working with password-protected
Paradox and dBASE tables
Specifying Paradox directory
locations.
Working with BDE aliases
Retrieving information about a
session.
Creating additional sessions
Naming a session
Managing multiple sessions
Using transactions with the BDE
Using passthrough SQL
Using local transactions
Using the BDE to cache updates
Enabling BDE-based cached
updates
Applying BDE-based cached
updates
Applying cached updates using
a database
Applying cached updates with
dataset component methods
Creating an OnUpdateRecord
event handler
Handling cached update errors
Using update objects to update a
dataset
Creating SQL statements for
update components
Using multiple update objects
Executing the SQL statements
Using TBatchMove
Creating a batch move component
Specifying a batch move mode
Appending records
Updating records
Appending and updating

Copying datasets.
Deleting records

24-23
24-24

24-26
24-26
24-27
24-28
24-29
24-30
24-31
24-31

24-33

24-33

24-34

24-35

24-35
24-37

Mapping datatypes 24-49
Executing a batchmove 24-50
Handling batch move errors 24-51
The Data Dictionary 24-51
Tools for working with the BDE 24-53
Chapter 25
Working with ADO components 25-1
Overview of ADO components 25-1
Connecting to ADO datastores 25-2
Connecting to a data store using
TADOConnection. 25-3
Accessing the connection object. 25-4
Fine-tuning a connection 25-4
Forcing asynchronous connections25-5
Controlling time-outs. 25-5
Indicating the types of operations
the connection supports 25-5
Specifying whether the connection
automatically initiates transactions . . .25-6
Accessing the connection’s commands . . .25-7
ADO connectionevents 25-7
Events when establishing a
connection 25-7
Events when disconnecting 25-7
Events when managing
transactions 25-8
Otherevents. 25-8
Using ADO datasets. 25-8
Connecting an ADO dataset to
adatastore 259
Working with record sets 25-10
Filtering records based on
bookmarks. 25-10
Fetching records
asynchronously 25-11
Using batch updates 25-11
Loading data from and saving
datatofiles. 25-14
Using TADODataSet. 25-15
Using Command objects 25-16
Specifying the command 25-17
Using the Execute method. 25-17
Canceling commands 25-17
Retrieving result sets with
commands. 25-18
Handling command parameters 25-18

Chapter 26
Using unidirectional datasets

Types of unidirectional datasets
Connecting to the database server
Setting up TSQLConnection
Identifying the driver
Specifying connection parameters. . . .
Naming a connection description
Using the Connection Editor
Specifying what data to display
Representing the results of a query
Representing the records in a table
Representing a table using
TSQLDataSet
Representing a table using
TSQLTable
Representing the results of a stored
procedure
Fetching the data
Preparing the dataset
Fetching multiple datasets
Executing commands that do not
returnrecords
Specifying the command to
executeo oo
Executing the command
Creating and modifying server
metadata
Setting up master/detail linked
CUISOTS © « v v v v e e e e e e e e e e
Accessing schema information
Fetching metadata into a unidirectional
dataset
Fetching data after using the
dataset formetadata.
The structure of metadata
datasets
Debugging dbExpress applications
Using TSQLMonitor to monitor
SQL commands
Using a callback to monitor
SQL commands

Chapter 27
Using client datasets

Working with data using a client
dataset
Navigating data in client datasets

Xiv

Limiting what records appear. 27-2
Editingdata., . 27-5
Undoing changes 27-5
Savingchanges 27-6
Constraining data values 27-6
Specifying custom constraints. 27-7
Sorting and indexing. 27-7
Addinganewindex 27-8
Deleting and switching indexes. 27-9
Using indexes to group data. 279
Representing calculated values. 27-10
Using internally calculated fields
in client datasets. 27-10
Using maintained aggregates. 27-11
Specifying aggregates 27-11
Aggregating over groups of
records 27-12
Obtaining aggregate values 27-13
Copying data from another dataset 27-13
Assigning data directly. 27-14
Cloning a client dataset cursor 27-14
Adding application-specific information
tothedata. 27-15
Using a client dataset to cache updates 27-15
Overview of using cached updates. 27-16
Choosing the type of dataset for
caching updates. 27-17
Indicating what records are
modified. L 27-18
Updating records. 27-19
Applying updates. 27-20
Intervening as updates are
applied. 27-21
Reconciling update errors 27-22
Using a client dataset with a provider. 27-24
Specifying a provider 27-24
Requesting data from the source
dataset or document 27-25
Incremental fetching 27-25
Fetch-on-demand 27-26
Getting parameters from the source
dataset. 27-26
Passing parameters to the source
dataset. 27-27
Sending query or stored procedure
parameters. 27-28
Limiting records with parameters . . . 27-28
Handling constraints from the server . . . 27-29
Refreshingrecords 27-30

Communicating with providers using
custom events
Overriding the source dataset
Using a client dataset with file-based
data
Creating a new dataset
Loading data from a file or stream
Merging changes into data
Saving data to a file or stream

Chapter 28
Using provider components

Determining the source of data
Using a dataset as the source of the
data
Using an XML document as the
source of the data
Communicating with the client dataset . . .
Choosing how to apply updates using
a dataset provider
Controlling what information is included
in data packets
Specifying what fields appear in data
packets
Setting options that influence the data
packets
Adding custom information to data
packets
Responding to client data requests
Responding to client update requests
Editing delta packets before updating
the database
Influencing how updates are
applied
Screening individual updates
Resolving update errors on the
provider.
Applying updates to datasets that
do not represent a single table
Responding to client-generated

Chapter 29

Creating multi-tiered applications

Advantages of the multi-tiered database
model

Understanding provider-based multi-
tiered applications

XV

28-2

28-2

. 28-3

28-4
28-4
28-4
28-5
28-6
28-7
28-8
28-9

28-9
28-11

28-11

Overview of a three-tiered
application.
The structure of the client
application.,
The structure of the application
SEIVEL. & v v v v v e e e e e e e
The contents of the remote data

Using transactional data
modules
Pooling remote data modules
Choosing a connection protocol
Using DCOM connections
Using Socket connections
Using Web connections.
Using SOAP connections.
Building a multi-tiered application
Creating the application server.
Setting up the remote data module.
Configuring the remote data module
when it is not transactional
Configuring a transactional remote
datamodule.
Configuring TSoapDataModule.
Extending the application server’s
interface L L
Adding callbacks to the application
server’sinterface
Extending a transactional application
server’sinterface
Managing transactions in multi-tiered
applications
Supporting master/detail
relationships.
Supporting state information in
remote datamodules.
Using multiple remote data
modules L L
Registering the application server
Creating the client application
Connecting to the application
SEIVEL. . . v v v i
Specifying a connection using
DCOM
Specifying a connection using
sockets
Specifying a connection using
HTTP.

XVi

Specifying a connection using

SOAP 29-25
Brokering connections 29-25
Managing server connections 29-26
Connecting to theserver 29-26
Dropping or changing a server
onnection 29-26
Calling server interfaces 29-27
Connecting to an application server
that uses multiple data modules. 29-28
Writing Web-based client applications 29-28
Distributing a client application as an
ActiveXcontrol 29-30
Creating an Active Form for the
client application. 29-30
Building Web applications using
InternetExpress 29-31
Building an InternetExpress

application 29-31
Using the javascript libraries 29-33
Granting permission to access and

launch the application server. 29-33
Using an XML broker. 29-34
Fetching XML data packets. 29-34
Applying updates from XML delta
packets 29-35
Creating Web pages with an Internet-

Express page producer 29-36
Using the Web page editor 29-37
Setting Web item properties 29-37
Customizing the InternetExpress

page producer template. 29-38
Chapter 30
Using XML in database applications 30-1
Defining transformations 30-1
Mapping between XML nodes and
data packet fields 30-2
Using XMLMapper 30-4
Loading an XML schema or data
packet L. 30-4
Defining mappings 30-4
Generating transformation files 30-5
Converting XML documents into data
packets Lo 30-6
Specifying the source XML
document. 30-6
Specifying the transformation 30-7
Obtaining the resulting data packet. 30-7

Converting user-defined nodes. 30-7
Using an XML document as the source
foraprovider. 30-8
Using an XML document as the client of
aprovider. 30-9
Fetching an XML document from
aprovider, 30-9
Applying updates from an XML
document toa provider 30-10
Part III
Writing Internet applications
Chapter 31
Writing CORBA applications 311
Overview of a CORBA application 311
Understanding stubs and skeletons 31-2
Using Smart Agent. 31-3
Activating server applications 31-3
Binding interface calls dynamically 31-4
Writing CORBA servers. 31-4
Defining object interfaces 31-5
Using the CORBA Server Wizard. 31-5
Generating stubs and skeletons from
anIDLfile. 31-6
Using the CORBA Object Implementa-
tionWizard 31-6
Instantiating CORBA objects 31-7
Using the delegationmodel 31-8
Viewing and editing changes 31-9
Implementing CORBA Objects 31-9
Guarding against thread
conflicts 31-11
Changing CORBA interfaces 31-12
Registering server interfaces 31-12
Writing CORBA clients 31-13
Usingstubs 31-14
Using the dynamic invocation
interface L L 31-15
Testing CORBA servers 31-16
Setting up the testing tool 31-16
Recording and running test scripts. 31-17
Chapter 32
Creating Internet server
applications 32-1
About Web Broker and WebSnap 32-1
Terminology and standards. 32-3

Parts of a Uniform Resource Locator 32-3
URIvs.URL 32-4
HTTP request header information. 32-4
HTTP server activity 32-5
Composing client requests 32-5
Serving clientrequests 32-5
Responding to client requests 32-6
Types of Web server applications 32-6
ISAPIand NSAPI 32-6
CGlstand-alone 32-7
Win-CGI stand-alone 32-7
Apache, 32-7
Web App Debugger 32-7
Converting Web server application
targettypes. L. 32-8
Debugging server applications 329
Using the Web Application
Debugger. 32-9
Launching your application with
the Web Application Debugger. 32-9
Converting your application to
another type of Web server
application 32-10
Debugging Web applications that
areDLLs 32-10
User rights necessary for DLL
debugging. 32-11
Chapter 33
Using Web Broker 33-1
Creating Web server applications with
Web Broker. 33-1
The Webmodule. 33-2
The Web Application object 33-3
The structure of a Web Broker
application. 33-3
The Web dispatcher. 33-4
Adding actions to the dispatcher 33-4
Dispatching request messages. 33-5
Actionitems. L 33-5
Determining when action items fire. 33-6
Thetarget URL. 33-6
The request method type 33-6
Enabling and disabling action
items. o oL 33-6
Choosing a default action item. 33-7
Responding to request messages
with actionitems 33-7

Sending theresponse 33-8

Using multiple action items
Accessing client request information

Properties that contain request

header information.
Properties that identify the target. . .

Properties that describe the Web

cient

Properties that identify the purpose

of therequest

Properties that describe the expected

TESPONSE oo

Properties that describe the

content,

The content of HTTP request

MESSAZES. . . . o e
Creating HTTP response messages
Filling in the response header.
Indicating the response status.

Indicating the need for client

action.
Describing the server application. . . .
Describing the content
Setting the response content
Sending theresponse

Generating the content of response

MESSAZES v e
Using page producer components
HTML templates
Specifying the HTML template

Converting HTML-transparent

tags.

Using page producers from an

actionitem.

Chaining page producers

together

Using database information in

responseso

Adding a session to the Web

module.,

Representing database information

Using dataset page producers.
Using table producers
Specifying the table attributes.
Specifying the row attributes
Specifying the columns.

Embedding tables in HTML

documents.

. .33-8 Setting up a dataset table
. .33-8 producer 33-20
Setting up a query table
. .33-9 producer 33-20
. .339
Chapter 34
..33-9 Creating Web Server applications
3.9 using WebSnap 3441
i Fundamental WebSnap components 34-2
33-10 Webmodules. 34-2
) Web application module types. 34-3
33-10 Web pagemodules. 34-4
B Web datamodules. 34-4
33-10 Adapters 34-5
Fields 34-5
33-10 .
Actions 34-6
33-11
3311 Errors 34-6
B Records 34-6
Page producers 34-6
33-11 ¢ L .
Creating Web server applications with
33-12
WebSnap. 34-7
33-12 .
3312 Selecting a servertype 34-8
i Specifying application module
33-12
components 34-8
Selecting Web application module
33-13 .
3313 options 34-10
WebSnap tutorial 34-11
33-13 .
3314 Create a new application. 34-11
Step 1. Start the WebSnap application
33.15 wizard. 34-11
B Step 2. Save the generated files and
3315 project. 34-11
Step 3. Specify the application
33-16 title. 34-12
) Create a CountryTable page 34-12
3317 Step 1. Add a new Web page
) module 34-12
33.17 Step 2. Save the new Web page
module 34-13
Add data components to the Country-
33-18
33.18 Tablemodule. 34-13
) Step 1. Add data-aware
33-18
3318 components. 34-13
Step 2. Specify a key field. 34-14
33-19
33-19 Step 3. Add an adapter
component 34-14
3319 Create a grid to display the data. 34-15
) Step1l.Addagrid 34-15

XViii

Step 2. Add editing commands to

thegrid. 34-17
Addaneditform. 34-18
Step 1. Add a new Web page
module. 34-18
Step 2. Save the new module 34-18
Step 3. Make CountryTableU
accessible to the new module 34-18
Step 4. Add input fields 34-18
Step 5. Add buttons. 34-19
Step 6. Link form actions to the
gridpage. 34-20
Step 7. Link grid actions to the
formpage 34-20
Run the completed application 34-21
Add error reporting L. 34-21
Step 1. Add error support to
thegrid. 34-21
Step 2. Add error support to
theform 34-22
Step 3. Test the error-reporting
mechanism. 34-22
Advanced HTML design 34-23
Manipulating server-side script
inHTMLfiles. 34-24
Loginsupport 34-24
Adding loginsupport 34-25
Using the sessions service. 34-26
Loginpages. 34-26
Setting pages to require logins 34-28
User accessrights. 34-28
Dynamically displaying fields as
editor textboxes 34-29
Hiding fields and their contents. 34-30
Preventing page access. 34-30
Server-side scripting in WebSnap 34-30
Activescripting. 34-31
Scriptengine 34-31
Scriptblocks. L. 34-31
Creating script 34-32
Wizard templates 34-32
TAdapterPageProducer 34-32
Editing and viewing script 34-32
Including scriptinapage 34-32
Scriptobjects 34-32
Dispatching requests and responses. 34-33
Dispatcher components 34-34
Adapter dispatcher operation. 34-34

Xix

Using adapter components to
generate content
Receiving adapter requests and
generating responses
Image request
Image response
Dispatching action items
Page dispatcher operation

Chapter 35

Working with XML documents
Using the Document Object Model
Working with XML components
Using TXMLDocument
Working with XML nodes
Working with a node’s value
Working with a node’s attributes . . .
Adding and deleting child nodes . . .
Abstracting XML documents with the
Data Binding wizard
Using the XML Data Binding wizard
Using code that the XML Data
Binding wizard generates

Chapter 36
Using Web Services

Understanding invokable interfaces
Using nonscalar types in invokable
interfaces
Registering nonscalar types
Registering typedef’ed types and
enumerated types
Using remotable objects
Remotable object example
Writing servers that support Web
Services
Building a Web Service server
Using the SOAP application wizard
Adding new Web Services
Editing the generated code
Using a different base class
Using the Web Services Importer
Creating custom exception classes
for Web Services
Generating WSDL documents for a
Web Service application
Writing clients for Web Services
Importing WSDL documents
Calling invokable interfaces

35-1
35-2
35-3
35-3
35-4
35-4

. 35-5
. 35-5

35-5
35-7

35-8

Chapter 37

Working with sockets 371
Implementing services 37-1
Understanding service protocols 37-2
Communicating with applications37-2
Servicesand ports 37-2
Types of socket connections. 37-2
Client connections 37-3
Listening connections 37-3
Server connections 37-3
Describing sockets. 37-3
Describing thehost. 37-4
Choosing between a host name
andanIPaddress. 37-4
Usingports 37-5
Using socket components. 37-5
Getting information about the
connection. 37-6
Using clientsockets 37-6
Specifying the desired server 37-6
Forming the connection 37-6
Getting information about the
connection. 37-6
Closing the connection. 37-7
Using serversockets 37-7
Specifying theport 37-7
Listening for client requests 37-7
Connecting toclients. 37-7
Closing server connections 37-7
Responding to socketevents 37-8
Errorevents. 37-8
Clientevents 37-8
Serverevents 37-9
Events when listening 379
Events with client connections 37-9
Reading and writing over socket
connections 37-9
Non-blocking connections. 37-10
Reading and writing events 37-10
Blocking connections. 37-10
Part IV
Developing COM-based applications
Chapter 38
Overview of COM technologies 38-1
COM as a specification and
implementation 38-1

COMextensions 38-2
Parts of a COM application 38-2
COMinterfaces 38-3
The fundamental COM interface,
IUnknown 38-4
COM interface pointers 38-4
COMServers.o v v v v v i i a o 38-5
CoClasses and class factories. 38-6
In-process, out-of-process, and
remoteservers 38-6
The marshaling mechanism 38-8
Aggregation 38-9
COMuclients 38-9
COMextensions. 38-10
Automationservers. 38-12
Active Server Pages. 38-13
ActiveXcontrols. 38-13
Active Documents. 38-14
Transactional objects 38-14
COM+ Event and event subscriber
objects. 38-15
Typelibraries. 38-16
The content of type libraries 38-16
Creating type libraries. 38-17
When to use type libraries 38-17
Accessing type libraries. 38-17
Benefits of using type libraries 38-18
Using type library tools. 38-18
Implementing COM objects with
wizards. 38-19
Code generated by wizards 38-22
Chapter 39
Working with type libraries 39-1
Type Library editor 39-2
Parts of the Type Library editor 39-2
Toolbar 39-3
Object listpane. 39-4
Statusbar. 39-5
Pages of type information. 39-5
Type library elements. 39-8
Interfaces 39-8
Dispinterfaces 39-9
CoClasses. v v v v v v v i oo 39-9
Type definitions 39-9
Modules. 39-10
Using the Type Library editor 39-10
Validtypes 39-11

Creating a new type library. 39-12

Opening an existing type library
Adding an interface to the type

library
Modifying an interface using the

type library
Adding properties and methods

to an interface or dispinterface . . .
Adding a CoClass to the type

library
Adding an interface to a CoClass . . .
Adding an enumeration to the

type library
Adding an alias to the type

library
Adding a record or union to the

type library
Adding a module to the type

library
Saving and registering type

library information
Saving a type library
Refreshing the type library
Registering the type library
Exporting anIDL file.

Deploying type libraries

Chapter 40
Creating COM clients

Importing type library information
Using the Import Type Library
dialog
Using the Import ActiveX dialog.
Code generated when you import
type library information.
Controlling an imported object.
Using component wrappers.
ActiveX wrappers.
Automation object wrappers
Using data-aware ActiveX controls
Example: Printing a document with
Microsoft Word
Step 1: Prepare C++Builder for this
example
Step 2: Import the Word type
library
Step 3: Use a VTable or dispatch
interface object to control Microsoft
Word
Step 4: Clean up the example

39-13

39-13

39-14

. 39-14

39-15

. 39-15

39-16

Writing client code based on type

library definitions 40-12
Connecting toa server 40-12
Controlling an Automation server

using a dual interface 40-13
Controlling an Automation server
using a dispatch interface. 40-13
Handling events in an automation
controller 40-14
Creating clients for servers that do not
haveatypelibrary 40-15
Chapter 41
Creating simple COM servers 411
Overview of creating a COM object. 41-1
Designinga COMobject 41-2
Using the COM object wizard 41-2
Using the Automation object wizard 41-4
Choosing a threading model 41-5
Writing an object that supports the
free threading model. 41-6
Writing an object that supports
the apartment threading model 41-7
Writing an object that supports
the neutral threading model 41-8
Specifying ATL options 41-8
Defining a COM object’s interface 41-9
Adding a property to the object’s
interface. L. 41-9
Adding a method to the object’s
interface. 41-10
Exposing events to clients 41-10

Managing events in your Auto-
mationobject. 41-11

Automation interfaces 41-12
Dual interfaces. 41-12
Dispatch interfaces 41-13
Custom interfaces. 41-14

Marshalingdata. 41-14
Automation compatible types 41-14
Type restrictions for automatic

marshaling 41-15
Custom marshaling 41-15

Registeringa COM object 41-16
Registering an in-process server. 41-16
Registering an out-of-process

SEIVET + v v v v v e e e e e e e e e 41-16

Testing and debugging the

application. 41-17

Chapter 42
Creating an Active Server Page

Creating an Active Server Object
Using the ASP intrinsics
Application
Request.
Response
Session
Server
Creating ASPs for in-process or
out-of-process servers
Registering an Active Server Object
Registering an in-process server
Registering an out-of-process server
Testing and debugging the Active Server
Page application

Chapter 43
Creating an ActiveX control

Overview of ActiveX control creation
Elements of an ActiveX control
VCL control
ActiveX wrapper
Type library
Property page
Designing an ActiveX control
Generating an ActiveX control from
a VCL control
Generating an ActiveX control based
on a VCL form
Licensing ActiveX controls
Customizing the ActiveX control’s
interface
Adding additional properties,
methods, and events
Adding properties and
methods
Adding events
Enabling simple data binding with
the type library
Creating a property page for an
ActiveX control
Creating a new property page
Adding controls to a property page . . .
Associating property page controls
with ActiveX control properties
Updating the property page
Updating the object

43-13
43-13

. 43-14

43-14
43-14
43-15

Xxii

Connecting a property page to an

ActiveXcontrol 43-15
Registering an ActiveX control 43-15
Testing an ActiveX control. 43-16
Deploying an ActiveX control on

theWeb. 43-16
Settingoptions. 43-17
Chapter 44
Creating MTS or COM+ objects 4441
Understanding transactional objects 44-2
Requirements for a transactional

object 44-3

Managing resources 44-3
Accessing the object context 44-4
Just-in-time activation 44-4
Resourcepooling 44-5

Database resource dispensers 44-6
Shared property manager. 44-6
Releasing resources 44-9
Objectpooling 44-9
MTS and COM+ transaction support. 44-10
Transaction attributes. 44-11
Setting the transaction attribute 44-11
Stateful and stateless objects 44-12
Influencing how transactionsend 44-12
Initiating transactions. 44-13
Setting up a transaction object
ontheclientside. 44-13
Setting up a transaction object
ontheserverside 44-14
Transaction time-out 44-15
Role-based security 44-16
Overview of creating transactional
objects 44-17
Using the Transactional Object
wizard 44-17
Choosing a threading model for
a transactional object 44-18
Activities L. 44-19

Generating events under COM+ 44-20
Using the Event Object wizard. 44-22
Using the COM+ Event Subscription

objectwizard. 44-23

Firing events using a COM+ event

object L. 44-24

Passing object references. 44-24
Using the SafeRef method 44-25
Callbacks 44-25

Debugging and testing transactional

objects 44-26
Installing transactional objects 44-27
Administering transactional objects 44-28
Part V
Creating custom components
Chapter 45
Overview of component creation ~ 45-1
Class libraries. 45-1
Componentsand classes 45-2
How do you create components? 45-2

Modifying existing controls. 45-3
Creating windowed controls 45-3
Creating graphiccontrols 45-4
Subclassing Windows controls 45-4
Creating nonvisual components 45-5
What goes into a component? 45-5
Removing dependencies. 45-5
Setting properties, methods, and
events L. 45-6
Properties 45-6
Events 45-6
Methods 45-6
Encapsulating graphics 45-7
Registering components. 45-8
Creating a new component 45-8
Creating a component with the
Component wizard. 45-9
Creating a component manually 45-11
Creating aunitfile 45-11
Deriving the component. 45-12
Declaring a new constructor. 45-13
Registering the component 45-13
Creating a bitmap for a component 45-14
Testing uninstalled components 45-16
Testing installed components. 45-18
Installing a component on the
Component palette. 45-18
Making source files available 45-19
Adding the component 45-19
Chapter 46
Object-oriented programming for

component writers 46-1

Definingnew classes 46-1
Deriving new classes. 46-2

To change class defaults to avoid

repetition L. 46-2
To add new capabilities to a
class 46-2
Declaring a new componentclass. 46-3
Ancestors, descendants, and class
hierarchies 46-3
Controlling access. 46-4
Hiding implementation details 46-4
Defining the component writer’s
interface. 46-6
Defining the runtime interface. 46-7
Defining the design-time interface 46-7
Dispatching methods. 46-8
Regular methods 46-8
Virtualmethods 46-9
Overriding methods. 46-9
Abstract classmembers 46-10
Classes and pointers 46-10
Chapter 47
Creating properties 47-1
Why create properties?. 47-1
Types of properties 47-2
Publishing inherited properties 47-3
Defining properties. 47-3
The property declaration. 47-3
Internal data storage 47-4
Directaccess 47-4
Accessmethods 47-5
The read method. 47-6
The writemethod 47-6
Default property values 47-7
Specifying no default value. 47-7
Creating array properties 47-8
Creating properties for sub-
components 47-9
Storing and loading properties 47-10
Using the store-and-load
mechanism. 47-11
Specifying default values. 47-11
Determining what tostore 47-12
Initializing after loading 47-13
Storing and loading unpublished
properties. 47-13
Creating methods to store and
load property values. 47-13
Overriding the DefineProperties
method 47-14

xxiii

Chapter 48

Creating events 48-1
Whatareevents?. 48-1
Eventsareclosures. 48-2
Events are properties. 48-2
Event types are closure types 48-3
Event handlers have a return
typeofvoid 48-3
Event handlers are optional 48-3
Implementing the standard events. 48-4
Identifying standard events. 48-4
Standard events for all controls 48-4
Standard events for standard
controls. 48-5
Making events visible 48-5
Changing the standard event
handling. 48-5
Defining your ownevents 48-6
Triggering theevent 48-6
Two kindsofevents 48-7
Defining the handler type. 48-7
Simple notifications. 48-7
Event-specific handlers. 48-7
Returning information from
thehandler. 48-7
Declaring theevent. 48-8
Event names start with “On” 48-8
Calling theevent 48-8
Chapter 49
Creating methods 49-1
Avoiding dependencies 49-1
Naming methods 49-2
Protectingmethods 49-3
Methods that should be public 49-3
Methods that should be protected 49-3
Making methods virtual 49-3
Declaring methods. 49-4
Chapter 50
Using graphics in components 50-1
Overview of graphics 50-1
Usingthecanvas. 50-3
Working with pictures. 50-3
Using a picture, graphic, or canvas. 50-3
Loading and storing graphics. 50-4

Handling palettes 50-5
Specifying a palette for a control. 50-5
Off-screenbitmaps 50-6
Creating and managing off-screen
bitmaps., 50-6
Copying bitmapped images 50-6
Responding to changes. 50-7
Chapter 51

Handling messages and system

notifications 51-1
Understanding the message-handling
system 511
What's in a Windows message? 51-2
Dispatching messages. 51-3
Tracing the flow of messages. 51-3
Changing message handling. 51-4
Overriding the handler method 51-4
Using message parameters. 51-5
Trapping messages 51-5
Creating new message handlers. 51-6
Defining your own messages 51-6
Declaring a message identifier 51-6
Declaring a message-structure
type . ..o 51-7
Declaring a new message-handling
method 51-7
Sending messages. 51-8
Broadcasting a message to all
controlsinaform 51-8
Calling a control’s message
handler directly 51-9
Sending a message using the
Windows message queue 51-9
Sending a message that does
not execute immediately 51-10
Responding to system notifications
usingCLX 51-10
Responding to signals. 51-10
Assigning custom signal
handlers. 51-11
Responding to system events 51-12
Commonly used events. 51-13
Overriding the EventFilter
method 51-14
Generating Qtevents 51-15

Xxiv

Chapter 52
Making components available

at design time 52-1
Registering components. 52-1
Declaring the Register function. 52-2
Writing the Register function. 52-2
Specifying the components 52-2
Specifying the palette page 52-3
Using the RegisterComponents
function 52-3
Adding palette bitmaps. 52-4
Providing Help for your component. 52-4
Creating the Help file 52-5
Creating the entries. 52-5
Making component help
context-sensitive 52-6
Adding component help files 52-7
Adding property editors 52-7
Deriving a property-editor class 52-7
Editing the property astext. 52-8
Displaying the property value. 52-9
Setting the property value 52-9
Editing the property asawhole 52-9
Specifying editor attributes 52-10
Registering the property editor. 52-11
Property categories 52-12
Registering one property ata time 52-12
Registering multiple properties
atonce oL 52-13
Specifying property categories 52-14
Using the IsPropertyInCategory
function oL 52-15
Adding component editors. 52-15
Adding items to the context menu 52-16
Specifying menu items. 52-16
Implementing commands 52-16
Changing the double-click behavior 52-17
Adding clipboard formats. 52-18
Registering the component editor 52-18
Compiling components into packages. 52-19
Troubleshooting custom components 52-19
Chapter 53
Modifying an existing component 53-1
Creating and registering the component53-1
Modifying the componentclass 53-3
Overriding the constructor 53-3

Specifying the new default property
value

Chapter 54
Creating a graphic control

Creating and registering the
component
Publishing inherited properties
Adding graphic capabilities
Determining what to draw
Declaring the property type
Declaring the property
Writing the implementation
method
Overriding the constructor and
destructor
Changing default property values. . .
Publishing the pen and brush
Declaring the data members
Declaring the access properties
Initializing owned classes
Setting owned classes’ properties . . .
Drawing the component image
Refining the shape drawing

Chapter 55
Customizing a grid
Creating and registering the
component
Publishing inherited properties
Changing initial values
Resizing the cells
Filling in the cells
Tracking the date
Storing the internal date
Accessing the day, month, and
year
Generating the day numbers
Selecting the current day
Navigating months and years
Navigating days
Moving the selection
Providing an OnChange event
Excluding blank cells

Chapter 56
Making a control data aware

Creating a data browsing control

XXV

54-1

54-1
54-3
54-3
54-3
54-4
54-4

54-5

54-5

. 54-5

54-6
54-6
54-6
54-7

. 54-8

54-9
54-10

Creating and registering the
component.,
Making the control read-only.
Adding the ReadOnly property.
Allowing needed updates
Adding thedatalink.
Declaring the data member
Declaring the access properties
An example of declaring access
properties
Initializing the data link
Responding to data changes
Creating a data editing control
Changing the default value of
FReadOnly
Handling mouse-down and key-down
MeSSAZES. . . « . o vt
Responding to mouse-down
MeSSAZES. oo
Responding to key-down
MeSSAZES oot
Updating the field data link class.
Modifying the Change method
Updating the dataset.

Chapter 57
Making a dialog box a
component

Defining the component interface
Creating and registering the
component
Creating the component interface
Including the form unit files
Adding interface properties.
Adding the Execute method
Testing the component

Chapter 58
Extending the IDE

Overview of the Tools API
Writing awizardclass.
Implementing the wizard interfaces

Simplifying implementing interfaces

Installing the wizard package.
Obtaining Tools API services.
Using native IDE objects.
Using the INTAServices interface. . . .

Adding an image to the image list
Adding an action to the action list

Deleting toolbar buttons 58-10
Debugging awizard 58-11
Interface versionnumbers 58-11

Working with files and editors 58-12
Using module interfaces 58-13
Using editor interfaces 58-13

Creating forms and projects 58-14
Creatingmodules 58-14

Notifying a wizard of IDEevents. 58-18

Installingawizard DLL 58-22
Using a DLL without runtime

packages 58-23
Appendix A
ANSI implementation-specific
standards A-1
Appendix B
WebSnap server-side scripting
reference B-1

Objecttypes B-1
Adaptertype. oL B-2

Properties. B-2
AdapterActiontype. B-4

Properties. B-4

Methods. B-6
AdapterErrorstype B-6

Properties. B-6
AdapterField type. B-6

Properties. B-6

Methods. B-9
AdapterFieldValues type. B-10

Properties. B-10

Methods. B-10
AdapterFieldValuesList type. B-10

Properties. B-10

Methods. B-11
AdapterHiddenFields type. B-11

Properties. B-11

Methods. B-11
AdapterImagetype B-12

Properties. B-12
Moduletype B-12

Properties. B-12
Pagetype. B-12

Properties. B-12

Globalobjects B-14
Applicationobject. B-14

XXVi

Properties B-14

Methods B-15
EndUserobject B-15
Properties B-15
Modulesobject, B-16
Pageobject B-16
Pagesobject. B-16
Producerobject. B-17
Properties B-17
Methods B-17
Requestobject. B-17
Properties B-17
Response object. B-18
Properties B-18
Methods B-18
Sessionobject. B-18
Properties B-18
JScript Examples B-19
Examplel. B-20
Example2. B-20
Example3. B-20

Xxvii

Example4 B-21
Example5, B-21
Example6 B-22
Example?7 B-22
Example8 B-23
Example9 B-23
Example10. B-24
Example11. B-26
Example12. B-27
Example13. B-28
Example14. B-29
Example15. B-30
Examplel6. B-32
Example17. B-33
Example18. B-34
Example19. B-35
Example20. B-35
Example21. B-36
Example22. B-37
Index -1

Tables

1.1 Typefacesand symbols 1-3 104 CLXMIME types and constants 10-22
3.1 Importantbaseclasses 3-5 10.5 Mouse-event parameters. 10-24
41 Openmodes 4-6 10.6 Multimedia device types and their
42 Sharemodes 4-6 functions. 10-32
4.3 Shared modes available for each 11.1 Thread priorities 11-3
openmode 4-6 11.2 WaitFor returnvalues 11-10
4.4 Attribute constants and values. 4-8 12.1 Exception handling compiler
4.5 Classes for managing lists 4-13 options. 12-14
4.6 String comparison routines 4-22 12.2 Selected exceptionclasses 12-17
4.7 Case conversionroutines 4-22 13.1 Object model comparison 13-10
4.8 String modification routines: 4-22 13.2 Equality comparison !A == !B
49 Sub-string routines 4-23 of BOOL variables 13-20
410 Null-terminated string comparison 13.3 Examples of RTTI mappings from
routines. 4-23 Object Pascal toC++ 13-22
4.11 Case conversion routines for 14.1 Porting techniques 14-2
null-terminated strings 4-24 142 CLXwparts 14-5
4.12 String modification routines 4-24 143 Changed or different features. 14-8
413 Sub-string routines 4-24 144 VCL and equivalent CLX units 14-9
414 String copying routines 424 145 CLX-onlyunits 14-9
51 Component palette pages 57 146 VCL-onlyunits 14-10
6.1 Properties of selected text. 6-8 14.7 Differences in the Linux and
6.2 Fixed vs. variable owner-draw Windows operating environ-
styles 6-12 ments. 14-13
7.1 Compiler directives for libraries 7-10 14.8 Common Linux directories 14-15
7.2 Database pages on the Component 14.9 Comparable data-access
palette. 7-15 components 14-21
7.3 Web server applications. 7-17 14.10Properties, methods, and events
74 Context menu options for data for cachedupdates 14-25
modules. L 721 151 Packagefiles. 15-2
7.5 Help methods in TApplication. 7-33 15.2 Package-specific compiler
8.1 Action setup terminology. 8-17 directives. 15-11
8.2 Default values of the action manager’s 15.3 Package-specific command-line
PrioritySchedule property 8-23 linker switches 15-12
83 Actionclasses 8-27 15.4 Files deployed with a package 15-13
84 Sample captions and their derived 16.1 VCL objects that support BiDi. 16-4
Names, 8-31 16.2 VCL methods that support BiDi 16-7
8.5 Menu Designer context menu 16.3 Estimating string lengths 16-9
commands L. 8-37 171 Applicationfiles 17-3
8.6 Setting speed buttons” appearance. 8-44 17.2 Merge modules and their
8.7 Setting tool buttons’ appearance. 8-46 dependencies 17-4
8.8 Setting a cool button’s appearance. 8-48 17.3 dbExpress deployment as
9.1 Edit control properties 9-2 stand-alone executable. 17-7
10.1 Graphic objecttypes. 10-3 174 dbExpress deployment with driver
10.2 Common properties of the DLLs. 17-8
Canvasobject. 10-4 17.5 SQL database client software
10.3 Common methods of the files. 17-9
Canvasobject. 10-4 19.1 Datacontrols 19-2

Xxviii

19.2
19.3

19.4

19.5

19.6
19.7

19.8
211
221
222
22.3
224

22.5
22.6

22.7

22.8

229
23.1

23.2
23.3
234

23.5
23.6

23.7
23.8
239
241
24.2
24.3
244
24.5

24.6

Column properties.
Expanded TColumn Title

properties. L.
Properties that affect the way
composite fields appear.
Expanded TDBGrid Options

properties.
Grid control events
Selected database control grid
properties. L.
TDBNavigator buttons
Database connection components
Values for the dataset State

property.
Navigational methods of datasets

Navigational properties of datasets

Comparison and logical operators
that can appear in a filter
FilterOptions values
Filtered dataset navigational

methods.
Dataset methods for inserting,
updating, and deleting data
Methods that work with entire
records
Index-based search methods
TFloatField properties that affect
data display
Special persistent field kinds
Field component properties
Field component formatting
routines
Field componentevents.
Selected field component

methods.
Special conversion results
Types of object field components
Common object field descendant
properties. L.
Table types recognized by the BDE
based on file extension
TableType values.
BatchMove import modes
Database-related informational
methods for session components
TSessionList properties and

Properties, methods, and events
for cached updates.

19-20 247
24.8
19-20 249
25.1
19-23 252
25.3
19-24
19-26 254
19-28 261
19-29
211 262
.22-3 263
.22-5
22-6 264
22-14 265
22-15
27.1
22-16 272
22-17 273
22-21 281
22-27 282
28.3
.23-1 284
.23-6 285
23-11 29.1
23-15 292
23-15 293
321
23-16 33.1
23-19 341
23-22 342
34.3
23-23 344
345
.24-5
.24-5 36.1
.24-8 38.1
38.2
24-26
24-28 39.1
39.2
24-32 393

XXiX

UpdateKind values. 24-38
Batchmovemodes 24-48
Data Dictionary interface 24-52
ADO components. 25-2
ADO connectionmodes 25-6
Execution options for ADO

datasets 25-11
Comparison of ADO and client

dataset cached updates. 25-12
Columns in tables of metadata listing

tables. 26-13
Columns in tables of metadata listing

stored procedures. 26-14
Columns in tables of metadata listing

fields. 26-14
Columns in tables of metadata listing

indexes. 26-15
Columns in tables of metadata listing
parameters. 26-16
Filter support in client datasets 27-3
Summary operators for maintained
aggregates. 27-12
Specialized client datasets for caching
updates L. 27-17
AppServer interface members. 28-3
Provider options 28-5
UpdateStatus values 28-9
UpdateModevalues 28-10
ProviderFlags values. 28-10
Components used in multi-tiered
applications 29-3
Connection components 29-5
Javascript libraries 29-33
Web Broker versus WebSnap 32-2
MethodType values. 33-6
Web application module types 34-3
Web server application types 34-8
Web application components 34-9
Scriptobjects 34-33
Request information found in action

requests 34-36
Remotable classes. 36-7
COM object requirements 38-12
C++Builder wizards for implementing

COM, Automation, and ActiveX

objects L 38-20
Type Library editor files 39-2
Type Library editor parts 39-2
Type library pages 39-5

41.1
421
422
42.3
424
42.5
441
44.2
44.3
444
45.1
46.1
47.1

50.1
50.2

Threading models for COM

objects. Lo 41-5
IApplicationObject interface

members 42-4
IRequest interface members 42-4
IResponse interface members 42-5
ISessionObject interface members 42-6
IServer interface members 42-6
IObjectContext methods for

transaction support 44-12
Threading models for transactional

objects. L 44-18
Call synchronization options. 44-20
Event publisher return codes. 44-24
Component creation starting

points 45-3
Levels of visibility within an

object 46-4
How properties appear in the

Object Inspector 47-2
Canvas capability summary 50-3
Image-copying methods 50-6

XXX

51.1

51.2

52.1
52.2

52.3
524
58.1
58.2
58.3
Al

A2
B.1

B.2
B.3

TWidgetControl protected methods
for responding to system

notifications 51-13
TWidgetControl protected methods

for responding to events from

controls. 51-14
Predefined property-editor types. 52-8
Methods for reading and writing

property values. 52-9
Property-editor attribute flags. 52-10
Property categories. 52-14
The four kinds of wizards 58-3
Tools API service interfaces 58-8
Notifier interfaces. 58-18
Options needed for ANSI

compliance A-1
Identifying diagnostics in C++ A-3
WebSnap object types B-2
WebSnap global objects B-14
JScript examples of server-side

scripting B-19

3.1
32
8.1

8.3
8.4

8.6
8.7
9.2
10.1
13.1
16.1
16.2
16.3
16.4

18.1
18.2

18.3
18.4

18.5

19.1
19.2

19.3

19.4

19.5
19.6

20.1

20.2
20.3

Figures

Objects, components, and controls. 3-4
A simplified hierarchy diagram 3-4
A frame with data-aware controls

and a data source component 8-15
Menu terminology. 8-29
MainMenu and PopupMenu

components 8-30
Adding menu items to a main

MENU . . . v v v e e e e e e e e 8-33
Nested menu structures. 8-34
Aprogressbar 9-14
Bitmap-dimension dialog box

from the BMPDIg unit. 10-21
Order of VCL-style object

construction 13-9
TListBox set to bdLeftToRight 16-6
TListBox set to bdRightToLeft 16-6
TListBox set to bdRightToLeft

NoAlign. 16-6
TListBox set to bdRightToLeft

ReadingOnly. 16-7
Generic Database Architecture. 18-6
Connecting directly to the

databaseserver. 18-8
A file-based database application 18-9
Architecture combining a client

dataset and another dataset 18-12
Multi-tiered database

architecture. 18-13
TDBGrid control 19-15
TDBGrid control with ObjectView

settofalse. 19-23
TDBGrid control with Expanded

settofalse. 19-23
TDBGrid control with Expanded

settotrue. 19-23
TDBCtrlGrid at design time 19-27
Buttons on the TDBNavigator

control. 19-28
Decision support components

atdesigntime 20-2
One-dimensional crosstab 20-3
Three-dimensional crosstab 20-3

20.4 Decision graphs bound to different

decision sources. 20-14
24.1 Components in a BDE-based

application. 24-2
29.1 Web-based multi-tiered database

application., 29-29
31.1 Structure of a CORBA application 31-2
32.1 Parts of a Uniform Resource

Locator. 32-3
33.1 Structure of a Server Application. 33-3
34.2 Web App Components dialog. 34-9
34.5 CountryTable Preview tab. 34-16
34.6 CountryTable HTML Scripttab. 34-16
34.7 CountryTable Preview after editing

commands have been added 34-17
34.10 Web App Components dialog with

options for login support selected . . . 34-25
34.11 An example of a login page as seen

from a Web page editor 34-27
34.12 Generating content flow. 34-35
34.13 Action request and response 34-37
34.14 Image response to arequest. 34-38
34.15 Dispatchingapage. 34-39
38.1 ACOMinterface 38-3
38.2 Interfacevtable 38-5
38.3 In-processserver 38-7
38.4 Out-of-process and remote

SEIVEIS . . v v v i 38-8
38.5 COM-based technologies 38-11
38.6 Simple COM object interface 38-19
38.7 Automation object interface. 38-19
38.8 ActiveX objectinterface 38-20
39.1 Type Library editor. 39-3
39.2 Objectlistpane 39-4
41.1 Dual interface VTable 41-13
43.1 Mask Edit property page in design

mode. 43-14
441 The COM+ Events system 44-22
45.1 Visual Component Library class

hierarchy. 45-2
452 Componentwizard. 45-9
51.1 Signalrouting 51-11
51.2 System eventrouting. 51-13

XXX1

XXXii

Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for industry-
standard specifications such as SOAP, TCP/IP, COM+, and ActiveX. Many of the
advanced features that support Web development, advanced XML technologies, and
database development require components or wizards that are not available in all
versions of C++Builder.

The Developer’s Guide assumes you are familiar with using C++Builder and
understand fundamental C++Builder programming techniques. For an introduction
to C++Builder programming and the integrated development environment (IDE), see
the Quick Start and the online Help.

What’s in this manual?

This manual contains five parts, as follows:

e PartI, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) or Component Library for Cross-
Platform (CLX) objects that make user interface programming easy such as
handling strings, manipulating text, implementing the common dialogs, working
with graphics, error and exception handling, using DLLs, OLE automation, and
writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL describes language
issues such as how C++ class instantiation differs when using VCL classes and the
C++ language extensions added to support the C++Builder “component-property-
event” model of programming.

Introduction 1-1

What’s in this manual?

A chapter describes how to use objects in the Borland Component Library for
Cross-Platform (CLX) to develop applications that can be compiled and run on
either Windows or Linux platforms.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and
determining which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

e Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases, including local databases such as Paradox and dBASE,
and network SQL server databases like InterBase, Oracle, and Sybase. You can
choose from a variety of data access mechanisms, including dbExpress, the
Borland Database Engine, InterBaseExpress, and ActiveX Data Objects (ADO). To
implement the more advanced database applications, you need the C++Builder
features that are not available in all editions.

o PartIII, “Writing Internet applications,” describes how to create applications that
are distributed over the Internet. C++Builder includes a wide array of tools for
writing Web server applications, including: Web Broker, an architecture with
which you can create cross-platform server applications; WebSnap, with which
you can design Web pages in a GUI environment; support for working with XML
documents; and BizSnap, an architecture for using SOAP-based Web Services.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

e Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL)
wizards and a Type Library editor to ease the development of COM servers, and
an importing tool lets you quickly create client applications. Support for COM
clients is available in all editions of C++Builder. Support for COM servers is not
available in all editions of C++Builder.

¢ Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL or CLX class libraries.

1-2 Developer's Guide

Manualconventions

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning
Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.
Italics Ttalicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

Developer support services

Borland offers a variety of support options, including free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products, technical support, and fee-based consultant-level support.

For more information about Borland’s developer support services, please see our
Web site at http:/ /www .borland.com/devsupport/bcppbuilder, call Borland Assist
at (800) 523-7070, or contact our Sales Department at (831) 431-1064. For customers
outside of the United States of America, see our Web site at

http:/ /www.borland.com/bww /intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version and edition of the product you are using, and a detailed
description of the problem.

Ordering printed documentation

To order additional documentation, see the Borland Web site at shop.borland.com.

Introduction 1-3

1-4 Developer’s Guide

Programming with C++Builder

The chapters in “Programming with C++Builder” introduce concepts and skills
necessary for creating C++Builder applications using any edition of the product.

Programming with C++Builder

Developing applications with
C++Builder

Borland C++Builder is an object-oriented, visual programming environment to
develop 32-bit applications for deployment on Windows and Linux. Using
C++Builder, you can create highly efficient applications with a minimum of manual
coding.

C++Builder provides a suite of Rapid Application Development (RAD) design tools,

including programming wizards and application and form templates, and supports
object-oriented programming with two comprehensive class libraries:

* The Visual Component Library (VCL), which includes objects that encapsulate the
Windows API as well as other useful programming techniques (Windows).

* The Borland Component Library for Cross-Platform (CLX), which includes objects that
encapsulate the Qt library (Windows or Linux).

This chapter briefly describes the C++Builder development environment and how it
fits into the development life cycle. The rest of this manual provides technical details
on developing general-purpose, database, Internet and Intranet applications,
creating ActiveX and COM controls, and writing your own components.

Integrated development environment

When you start C++Builder, you are immediately placed within the integrated
development environment, also called the IDE. This IDE provides all the tools you
need to design, develop, test, debug, and deploy applications, allowing rapid
prototyping and a shorter development time.

The IDE includes all the tools necessary to start designing applications, such as the:

¢ Form Designer, or form, a blank window on which to design the Ul for your
application.

Developing applications with C++Builder 2-1

Designing applications

* Component palette for displaying visual and nonvisual components you can use
to design your user interface.

Object Inspector for examining and changing an object’s properties and events.
Object TreeView for displaying and changing a components’ logical relationships.
Code editor for writing and editing the underlying program logic.

Project Manager for managing the files that make up one or more projects.
Integrated debugger for finding and fixing errors in your code.

Many other tools such as property editors to change the values for an object’s
property.

Command-line tools including compilers, linkers, and other utilities.

Extensive class libraries with many reusable objects. Many of the objects provided
in the class library are accessible in the IDE from the Component palette. By
convention, the names of objects in the class library begin with a T, such as
TStatusBar.

Some tools may not be included in all editions of the product.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialog boxes, and windows.

Designing applications

You can use C++Builder to design any kind of 32-bit application—from general-
purpose utilities to sophisticated data access programs or distributed applications.

As you visually design the user interface for your application, C++Builder generates
the underlying C++ code to support the application. As you select and modify the
properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment.

In C++Builder, you can create your own components. Most of the components
provided are written in Object Pascal. You can add components that you write to the
Component palette and customize the palette for your use by including new tabs if
needed.

You can also use C++Builder to design applications that run on both Linux and
Windows by using CLX. CLX contains a set of classes that, if used instead of those in
the VCL, allows your program to port between Windows and Linux. Refer to
Chapter 14, “Developing cross-platform applications” for details about cross-
platform programming and the differences between the Windows and Linux
environments.

Chapter 7, “Building applications, components, and libraries,” introduces
C++Builder’s support for different types of applications.

2-2 Developer’s Guide

Creating projects

Creating projects

All of C++Builder’s application development revolves around projects. When you
create an application in C++Builder you are creating a project. A project is a
collection of files that make up an application. Some of these files are created at
design time. Others are generated automatically when you compile the project source
code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools in C++Builder.

At the top of the project hierarchy is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.bpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, and compiler. These
project options are stored in the project file with the project.

Units and forms are the basic building blocks of a C++Builder application. A project
can share any existing form and unit file including those that reside outside the
project directory tree. This includes custom procedures and functions that have been
written as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the project file. C++Builder
automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

Editing code

The C++Builder Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on the
form and modifying how they work in the Object Inspector. But other programming
tasks, such as writing event handlers for objects, must be done by typing the code.

Developing applications with C++Builder 2-3

Compiling applications

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changes and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor, and continue adjusting the form from there.

The C++Builder code generation and property streaming systems are completely
open to inspection. The source code for everything that is included in your final
executable file—all of the VCL objects, CLX objects, RTL sources, and project files—
can be viewed and edited in the Code editor.

Compiling applications

When you have finished designing your application interface on the form and
writing additional code so it does what you want, you can compile the project from
the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

* When you compile, only units that have changed since the last compile are
recompiled.

e When you build, all units in the project are compiled, regardless of whether they
have changed since the last compile. This technique is useful when you are unsure
of exactly which files have or have not been changed, or when you simply want to
ensure that all files are current and synchronized. It's also important to build when
you've changed global compiler directives to ensure that all code compiles in the
proper state.You can also test the validity of your source code without attempting
to compile the project.

* When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project | Compile All Projects or Project | Build
All Projects with the project group selected in the Project Manager.

CLX To compile a CLX application on Linux, a Borland C++ solution is not yet available,
but you can develop the application with C++Builder now.

Debugging applications

C++Builder provides an integrated debugger that helps you find and fix errors in
your applications. The integrated debugger lets you control program execution,
monitor variable values and items in data structures, and modify data values while
debugging.

2-4 Developer’s Guide

Deploying applications

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the variable values, the functions
on the call stack, and the program output, you can monitor how your program
behaves and find the areas where it is not behaving as designed. The debugger is
described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions in C++Builder are classes, like other classes in C++Builder, except, by
convention, they begin with an initial E rather than a T. See Chapter 12, “Exception
handling” for details on exception handling.

Deploying applications

Note
CLX

C++Builder includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all editions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. TeamSource software (not available in all editions) is also
available for tracking application updates.

Not all editions of C++Builder have deployment capabilities.

To deploy a CLX application on Linux, a Borland C++ solution is not yet available,
but you can develop the application with C++Builder now.

Refer to Chapter 17, “Deploying applications,” for specific information on
deployment.

Developing applications with C++Builder 2-5

2-6 Developer’s Guide

Using the class libraries

This chapter presents an overview of the class libraries and introduces some of the
components that you can use while developing applications. C++Builder includes
both the Visual Component Library (VCL) and the Borland Component Library for
Cross-Platform (CLX). The VCL is for Windows development and CLX is for cross-
platform development on both Windows and Linux. They are two different class
libraries but they have many similarities.

Understanding the class libraries

VCL and CLX are class libraries made up of objects that you use when developing
applications. The libraries are similar to each other and contain many of the same
objects. Some objects in VCL implement features that are available on Windows only,
such as objects that appear on the ADO, BDE, QReport, COM+, and Servers tabs on
the Component palette. Virtually all CLX objects are available on both Windows and
Linux.

All VCL and CLX objects descend from TObject, an abstract class whose methods
encapsulate fundamental behavior like construction, destruction, and message
handling. When you write classes of your own, they should descend from TObject in
the class library you plan to use.

Components are a subset of VCL or CLX and descend from the abstract class
TComponent. You can place components on a form or data module and manipulate
them at design time. Most components are either visual or nonvisual, depending on
whether they are visible at runtime. Some components appear on the Component
palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend
from TControl. TControl provides properties that specify the visual attributes of
controls, such as their height and width.

Using the class libraries 3-1

Understanding the class libraries

Nonvisual components are used for a variety of tasks. For example, if you are writing
an application that connects to a database, you can place a TDataSource component
on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At design time, nonvisual
components are represented by an icon. This allows you to manipulate their
properties and events just as you would a visual control.

Detailed reference material on all of the objects in VCL and CLX is accessible through
online Help while you are programming. In the Code editor, place the cursor
anywhere on the object and press F1 to display the Help topic. Objects, properties,
methods, and events that are in the VCL are marked “VCL Reference” and those in
CLX are marked “CLX Reference.”

Properties, methods, and events

Both the VCL and CLX form hierarchies of objects that are tied to the IDE, where you
can develop applications quickly. The objects in both component libraries are based
on properties, methods, and events. Each object includes data members (properties),
functions that operate on the data (methods), and a way to interact with users of the
class (events). The VCL and CLX are written in Object Pascal, though the VCL is
based on the Windows API and CLX is based on the Qt widget library.

Properties

Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen or not in an application interface. Well-designed properties make
your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

¢ Unlike methods, which are only available at runtime, you can see and change
properties at design time and get immediate feedback as the components change
in the IDE.

* You can access properties in the Object Inspector where you can modify the values
of your object visually. Setting properties at design time is easier than writing code
and makes your code easier to maintain.

* Because the data is encapsulated, it is protected and private to the actual object.

¢ The actual calls to get and set the values are methods, so special processing can be
done that is invisible to the user of the object. For example, data could reside in a
table, but could appear as a normal data member to the programmer.

* You can implement logic that triggers events or modifies other data during the
access of the property. For example, changing the value of one property may
require you to modify another. You can change the methods created for the

property.
¢ Properties can be virtual.

3-2 Developer’s Guide

Understanding the class libraries

* A property is not restricted to a single object. Changing one property on one object
could effect several objects. For example, setting the Checked property on a radio
button effects all of the radio buttons in the group.

Methods

A method is a function that is a member of a class. Methods define the behavior of an
object. Class methods can access all the public, protected, and private properties and
data members of the class and are commonly referred to as member functions. See
“Controlling access” on page 46-4.

Events

An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform next. For example, they may choose a menu item, click a button, or
mark some text. You can write code to handle the events you're interested in, rather
than writing code that always executes in the same restricted order.

Regardless of how an event is called, C++Builder looks to see if you have written any
code to handle that event. If you have, that code is executed; otherwise, the default
event handling behavior.

The kinds of events that can occur can be divided into two main categories:

¢ User events
* System events

User events

User events are actions that are initiated by the user. Examples of user events are
OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the
keyboard), and OnDBbIClick (the user double-clicked a mouse button).

System events

System events are events that the operating system fires for you. For example, the
OnTimer event (the Timer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or window needs to be redrawn), and so
on. Usually, system events are not directly initiated by a user action.

Using the class libraries 3-3

Objects, components, and controls

Objects, components, and controls

Figure 3.2 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.1 Objects, components, and controls

TObject

TComponent

TControl

(it

(TForm ’ TButton (TCheckBox ’ TListBox ’

Every object inherits from TObject, and many objects inherit from TComponent.
Controls inherit from TControl and have the ability to display themselves at runtime.
A control like TCheckBox inherits all the functionality of TObject, TComponent, and
TControl, and adds specialized capabilities of its own.

Ee

Figure 3.2 is an overview of the Visual Component Library (VCL) that shows the
major branches of the inheritance tree. The Borland Component Library for Cross-
Platform (CLX) looks very much the same at this level although TWinControl is
replaced by TWidgetControl.

Figure 3.2 A simplified hierarchy diagram

TObject (TPersistent '—»(TComponent)—»(TControl ’—»{ TWinControl ’

/ /

»| [Objects] : , ! _
L~ [Objects] [Objects] (TGraphicControl) [Objects]

»|[Objects]
\/\

Y

(Exception '—» [Objects]

3-4 Developer’s Guide

Objects, components, and controls

Several important base classes are shown in the figure, and they are described in the
following table:

Table 3.1 Important base classes
Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or
CLX. TObject encapsulates the fundamental behavior common to all VCL/
CLX objects by introducing methods that perform basic functions such as
creating, maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement properties. Classes
under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all nonvisual components such as TApplication.
TComponent is the common ancestor of all components. This class allows a
component to be displayed on the Component palette, lets the component
own other components, and allows the component to be manipulated
directly on a form.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWinControl Specifies the base class of all user interface objects. Controls under

TWinControl are windowed controls that can capture keyboard input. In
CLX, these are called widgets, and TWidgetControl replaces TWinControl.

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL and CLX object hierarchies,
refer to the VCL Object Hierarchy and CLX Object Hierarchy wall charts included
with this product.

TObject branch

The TObject branch includes all VCL and CLX objects that descend from TObject but
not from TPersistent. Much of the powerful capability of VCL and CLX objects are
established by the methods that TObject introduces. TObject encapsulates the
fundamental behavior common to all objects in the VCL and CLX by introducing
methods that provide:

¢ The ability to respond when objects are created or destroyed.

¢ (lass type and instance information on an object, and runtime type information
(RTTI) about its published properties.

* Support for message-handling (VCL) or system events (CLX).

TObject is the immediate ancestor of many simple classes. Classes that are contained
within the TObject branch have one common, important characteristic: they are
transitory. What this means is that these classes do not have a method to save the
state that they are in prior to destruction; they are not persistent.

Using the class libraries 3-5

Objects, components, and controls

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of group in the TObject branch are classes that encapsulate data
structures, such as:

TBits, a class that stores an “array” of Boolean values.

TList, a linked list class.

TStack, a class that maintains a last-in first-out array of pointers.
TQueue, a class that maintains a first-in first-out array of pointers.

In the VCL, you can also find wrappers for external objects like TPrinter, which
encapsulates the Windows printer interface, and TRegistry, a low-level wrapper for
the system registry and functions that operate on the registry. These are specific to
the Windows environment.

TStream is good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on.

Overall, this branch includes many different types of classes that are very useful to
you as a developer.

TPersistent branch

The TPersistent branch includes all VCL and CLX objects that descend from
TPersistent but not from TComponent. Persistence determines what gets saved with a
form file or data module and what gets loaded into the form or data module when it
is retrieved from memory.

Objects in this branch implement properties for components. Properties are only
loaded and saved with a form if they have an owner. The owner must be some
component. This branch introduces the GetOwner function which lets you determine
the owner of the property.

Objects in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method also
allows you to indicate how to load and save properties.

Following are some of the other classes in the TPersistent branch of the hierarchy:

* TGraphicsObject, an abstract base class for graphics objects such as: TBrush, TFont,
and TPen.

* TGraphic, an abstract base class for objects such as TBitmap and TIcon, which store
and display visual images.

e TStrings, a base class for objects that represent a list of strings.

e TClipboard, a class that contains text or graphics that have been cut or copied from
an application.

e TCollection, TOwnedCollection, and TCollectionltem, classes that maintain indexed
collections of specially defined items.

3-6 Developer’s Guide

Objects, components, and controls

TComponent branch

The TComponent branch contains objects that descend from TComponent but not
TControl. Objects in this branch are components that you can manipulate on forms at
design time. They are persistent objects that can do the following:

¢ Appear on the Component palette and can be changed in the form designer.
¢ Own and manage other components.
* Load and save themselves.

Several methods in TComponent dictate how components act during design time and
what information gets saved with the component. Streaming is introduced in this
branch of the VCL and CLX. C++Builder handles most streaming chores
automatically. Properties are persistent if they are published and published
properties are automatically streamed.

The TComponent class also introduces the concept of ownership that is propagated
throughout the VCL and CLX. Two properties support ownership: Owner and
Components. Every component has an Owner property that references another
component as its owner. A component may own other components. In this case, all
owned components are referenced in the component’s Array property.

A component's constructor takes a single parameter that is used to specify the new
component's owner. If the passed-in owner exists, the new component is added to
the owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by the form are destroyed and their memory
freed when the form is destroyed. This assumes that all of the components on the
form clean themselves up properly when their destructors are called.

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and read values for that instance’s properties.

When creating a form file (a file used to store information about the components on
the form), the form designer loops through its components array and saves all the
components on the form. Each component “knows” how to write its changed
properties out to a stream (in this case, a text file). Conversely, when loading the
properties of components in the form file, the form designer loops through the
components array and loads each component.

The types of classes you’ll find in this branch include:

» TActionList, a class that maintains a list of actions used with components and
controls, such as menu items and buttons.

e TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

* TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,
classes that provide commonly used dialog boxes.

Using the class libraries 3-7

Objects, components, and controls

¢ TScreen, a class that keeps track of what forms and data modules have been
instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs
internal functions that are accessed through code rather than appearing in the user
interface at runtime.

In CLX, the TComponent branch also includes THandleComponent. This is the base
class for nonvisual components that require a handle to an underlying Qt object such
as dialogs and menus.

See Chapter 5, “Working with components,” for details on setting properties, calling
methods, and working with events for components.

TControl branch

The TControl branch consists of components that descend from TControl but not
TWinControl (TWidgetControl in CLX). Objects in this branch are controls that are
visual objects that the application user can see and manipulate at runtime. All
controls have properties, methods, and events in common that relate to how the
control looks, such as its position, the cursor associated with the control’s window (or
widget in CLX), methods to paint or move the control, and events to respond to
mouse actions. Controls can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

All visual controls share certain properties. While these properties inherited from
TControl, they are published—and hence appear in the Object Inspector—only for
components to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays.

There are two types of controls:

¢ Those that have a window (or widget) of their own.
* Those that use the window (or widget) of their parent.

Controls that have their own window are called “windowed” controls (VCL) or
“widget-based” controls (CLX) and descend from TWinControl (TWidgetControl in
CLX). Buttons and check boxes fall into this class.

Controls that use the window (or widget) of their parent are called graphic controls
and descend from TGraphicControl. Images and shapes fall into this class. Graphic
controls do not maintain a handle and cannot receive the input focus. Because a
graphic control does not need a handle, it uses fewer system resources. Graphic
controls must draw themselves and cannot be a parent to other controls.

3-8 Developer’s Guide

Objects, components, and controls

See “Graphic controls” on page 9-16 for information about other graphics controls
and Chapter 9, “Types of controls,” for details on different types of controls. See
Chapter 6, “Working with controls,” for details on how to interact with controls at
runtime.

TWinControl/TWidgetControl branch

In the VCL, the TWinControl branch includes all controls that descend from
TWinControl. TWinControl is the base class for all windowed controls, which are
items that you will use in the user interface of an application, such as buttons, labels,
and scroll bars. Windowed controls are wrappers around a Windows control.

In CLX, TWidgetControl, which replaces TWinControl, is the base class for all widget
controls, which are wrappers around widgets.

Windowed and widget controls:

¢ Can receive focus while an application is running, which means they can receive
keyboard input from the application user. In comparison, other controls may only
display data.

¢ Can be a parent of one or more child controls.

¢ Have a handle, or unique identifier.

The TWinControl / TWidgetControl branch includes both controls that are drawn
automatically (including TEdit, TListBox, TComboBox, TPageControl, and so on) and
custom controls that C++Builder must draw, such as TDBNavigator, TMediaPlayer
(VCL only), and TGauge (VCL only). Direct descendants of TWinControl/
TWidgetControl typically implement standard controls, like an edit field, a combo
box, list box, or page control, and, therefore, already know how to paint themselves.

The TCustomControl class is provided for components that require a window handle
but do not encapsulate a standard control that includes the ability to repaint itself.
You never have to worry about how the controls render themselves or how they
respond to events—C++Builder completely encapsulates this behavior for you.

Using the class libraries 3-9

3-10 Developer’s Guide

Note

Note

Using BaseCLX

There are a number of units that are common to both the VCL and CLX that provide
the underlying support for both component libraries. Collectively, these units are
called BaseCLX. BaseCLX does not include any of the components that appear on the
component palette. Rather, it includes a number of classes and global routines that
are used by the components that do appear on the component palette. These classes
and routines are also available for you to use in application code or when you are
writing your own classes.

The global routines that make up BaseCLX are often called the runtime library. Do
not confuse these routines with the C++ runtime library. Many of these perform
functions similar to those in the C++ runtime library, but can be distinguished
because the function names begin with a capital letter and they are declared in the
header of a unit.

The following topics discuss many of the classes and routines that make up BaseCLX
and illustrate how to use them. These uses include:

¢ Using streams

¢ Working with files

e Working with .ini files

e Working with lists

* Working with string lists

¢ Working with strings

¢ Converting measurements

* Creating drawing spaces

This list of tasks is not exhaustive. The runtime library in BaseCLX contains many
routines to perform tasks that are not mentioned here. These include a host of
mathematical functions (defined in the Math unit), routines for working with date/
time values (defined in the SysUtils and DateUltils units), and routines for working
with Object Pascal Variants (defined in the Variants unit).

Using BaseCLX 4-1

Using streams

Using streams

Streams are classes that let you read and write data. They provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and BLOB fields in databases. There are several stream classes, which all descend
from TStream. Each stream class is specific to one media type. For example,
TMemoryStream reads from or writes to a memory image, TFileStream reads from or
writes to a file.

Using streams to read or write data

Stream classes all share several methods for reading and writing data. These methods
are distinguished by whether they perform the following:

* Return the number of bytes read or written.
* Require the number of bytes to be known.
¢ Raise an exception on error.

Stream methods for reading and writing

The Read method reads a specified number of bytes from the stream, starting at its
current Position, into a buffer. Read then advances the current position by the number
of bytes actually transferred. The prototype for Read is

virtual int __fastcall Read(void *Buffer, int Count);

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the stream did
not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the
current Position. The prototype for Write is:

virtual int __fastcall Write(const void *Buffer, int Count);

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered or the stream can’t accept any more
bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the
Read and Write methods, which can return a byte count that differs from the
requested value. The prototypes for ReadBuffer and WriteBuffer are:

virtual int __fastcall ReadBuffer(void *Buffer, int Count);
virtual int __fastcall WriteBuffer (const void *Buffer, int Count);

These methods call the Read and Write methods to perform the actual reading and
writing.

4-2 Developer’s Guide

Using streams

Reading and writing components

TStream defines specialized methods, ReadComponent and WriteComponent, for
reading and writing components. You can use them in your applications as a way to
save components and their properties when you create or alter them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read
components from or write them to form files. When streaming components to or
from a form file, stream classes work with the TFiler classes, TReader and TWriter, to
read objects from the form file or write them out to disk. For more information about
using the component streaming system, see the online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

Copying data from one stream to another

When copying data from one stream to another, you do not need to explicitly read
and then write the data. Instead, you can use the CopyFrom method, as illustrated in
the following example.

The application includes two edit controls (From and To) and a Copy File button.

void __fastcall TForml::CopyFileClick(TObject *Sender)
{
TStream* streaml=TFileStream::Create(From.Text, fmOpenRead | fmShareDenyWrite);
try
{
TStream* stream? -> TFileStream::Create(To.Text fmOpenCreate | fmShareDenyRead);
try
{
stream2 -> CopyFrom(streaml, streaml->Size);
}
__finally
{
delete stream?2;
}
}
__finally
{
delete streaml;
}
}

Specifying the stream position and size

In addition to methods for reading and writing, streams permit applications to seek
to an arbitrary position in the stream or change the size of the stream. Once you seek
to a specified position, the next read or write operation starts reading from or writing
to the stream at that position.

Using BaseCLX 4-3

Working with files

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position
in the stream. There are two overloads for the Seek method:

virtual int __fastcall Seek(int Offset, Word Origin);
virtual __int64 __fastcall Seek(const __int64 Offset, TSeekOrigin Origin);

Both overloads work the same way. The difference is that one version uses a 32-bit
integer to represent positions and offsets, while the other uses a 64-bit integer.

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.
soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a

number of bytes before the end of the file.

Seek resets the current stream position, moving it by the indicated offset. Seek returns
the new current position in the stream.

Using Position and Size properties

All streams have properties that hold the current position and size of the stream.
These are used by the Seek method, as well as all the methods that read from or write
to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the
beginning of the streamed data).

The Size property indicates the size of the stream in bytes. It can be used to determine
the number of bytes available for reading, or to truncate the data in the stream.

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a
file stream, setting Size inserts an end of file marker to truncate the file. If the Size of
the stream cannot be changed, an exception is raised. For example, trying to change
the Size of a read-only file stream raises an exception.

Working with files

BaseCLX supports several ways of working with files. In addition to using file
streams, there are several runtime library routines for performing file I/O. Both file
streams and the global routines for reading from and writing to files are described in
“ Approaches to file I/O” on page 4-5.

4-4 Developer’s Guide

Note

Working with files

In addition to input/output operations, you may want to manipulate files on disk.
Support for operations on the files themselves rather than their contents is described
in “Manipulating files” on page 4-7.

When using CLX in cross-platform applications, remember that although the Object
Pascal language is not case sensitive, the Linux operating system is. When using
objects and routines that work with files, be attentive to the case of file names.

Approaches to file I/0

There are three approaches you can take when reading from and writing to files:

¢ The recommended approach for working with files is to use file streams. File
streams are object instances of the TFileStream class used to access information in
disk files. File streams are a portable and high-level approach to file I/O. Because
file streams make the file handle available, this approach can be combined with
the next one. The next section, “Using file streams” discusses TFileStream in detail.

* You can work with files using a handle-based approach. File handles are provided
by the operating system when you create or open a file to work with its contents.
The SysUtils unit defines a number of file-handling routines that work with files
using file handles. On Windows, these are typically wrappers around Windows
API functions. Because the Delphi functions use Object Pascal syntax, and
occasionally provide default parameter values, they are a convenient interface to
the Windows API. Furthermore, there are corresponding versions on Linux, so
you can use these routines in cross-platform applications. To use a handle-based
approach, you first open a file using the FileOpen function or create a new file
using the FileCreate function. Once you have the handle, use handle-based routines
to work with its contents (write a line, read text, and so on).

¢ The C runtime library and standard C++ library include a number of functions
and classes for working with files. These have the advantage that they can be used
in applications that do not use the VCL or CLX. For information on these
functions, see the online documentation for the C runtime library or the standard
C++ library.

Using file streams

TFileStream is a class that enables applications to read from and write to a file on disk.
It is used for high-level object representations of file streams. Because TFileStream is a
stream object, it shares the common stream methods. You can use these methods to
read from or write to the file, copy data to or from other stream classes, and read or
write components values. See “Using streams” on page 4-2 for details on the
capabilities that files streams inherit by being stream classes.

In addition, file streams give you access to the file handle, so that you can use them
with global file handling routines that require the file handle.

Using BaseCLX 4-5

Working with files

Creating and opening files using file streams

To create or open a file and get access to its handle, you simply instantiate a
TFileStream. This opens or creates a named file and provides methods to read from or
write to it. If the file cannot be opened, the TFileStream constructor raises an
exception.

__fastcall TFileStream(const AnsiString FileName, Word Mode);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode OR’ed
together. The open mode must be one of the following values:

Table 41 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the

current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

The share mode can be one of the following values with the restrictions listed below:

Table 4.2 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.
fmShareExclusive Other applications can not open the file for any reason.
fmShareDenyWrite Other applications can open the file for reading but not for writing.
fmShareDenyRead Other applications can open the file for writing but not for reading.
fmShareDenyNone No attempt is made to prevent other applications from reading from or

writing to the file.

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

Table 4.3 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can't use Available Can’t use Available
fmOpenWrite Available Available Can’t use Available Available
fmOpenReadWrite Available Available Available Available Available

The file open and share mode constants are defined in the SysUtils unit.
Using the file handle

When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. On Windows, Handle is a Windows file handle. On

4-6 Developer’s Guide

Caution

Working with files

Linux versions of CLX, it is a Linux file handle. Handle is read-only and reflects the
mode in which the file was opened. If you want to change the attributes of the file
Handle, you must create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a
file stream, you can use the Handle property in any situation in which you would use
a file handle. Be aware that, unlike handle streams, file streams close file handles
when the object is destroyed.

Manipulating files

Several common file operations are built into the BaseCLX runtime library. The
procedures and functions for working with files operate at a high level. For most
routines, you specify the name of the file and the routine makes the necessary calls to
the operating system for you. In some cases, you use file handles instead.

Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files in cross-platform applications.

Deleting a file

Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm before deleting files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns true if it deleted the file and false if it did not (for example, if the file
did not exist or if it was read-only). DeleteFile erases the file named by FileName from
the disk.

Finding a file

There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns true if the
file exists, false otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec
defines the file information searched for by FindFirst or FindNext. The declaration for
TSearchRec is:

struct TSearchRec
{
int Time; // time stamp of the file
int Size; // size of the file in bytes
int Attr; // file attribute flags
AnsiString Name; // filename and extension
int ExcludeAttr; // file attribute flags for files to ignore

Using BaseCLX 4-7

Working with files

unsigned FindHandle;
_WIN32_FIND_DATAA FindData; // structure with addition information
b

1f a file is found, the fields of the TSearchRec type parameter are modified to describe
the found file. You can test Attr against the following attribute constants or values to
determine if a file has a specific attribute:

Table 4.4 Attribute constants and values

Constant Value Description
faReadOnly 0x00000001 Read-only files
faHidden 0x00000002 Hidden files
faSysFile 0x00000004 System files
faVolumelD 0x00000008 Volume ID files
faDirectory 0x00000010 Directory files
faArchive 0x00000020 Archive files
faAnyFile 0x0000003F Any file

To test for an attribute, combine the value of the Attr field with the attribute constant
using the & operator. If the file has that attribute, the result will be greater than 0. For
example, if the found file is a hidden file, the following expression will evaluate to
true: (SearchRec.Attr & faHidden > 0). Attributes can be combined by OR’ing their
constants or values. For example, to search for read-only and hidden files in addition
to normal files, pass (faReadOnly | faHidden) as the Attr parameter.

Example: This example uses a label, a button named Search, and a button named Again on a
form. When the user clicks the Search button, the first file in the specified path is
found, and the name and the number of bytes in the file appear in the label's caption.
Each time the user clicks the Again button, the next matching filename and size is
displayed in the label:

TSearchRec SearchRec; // global variable

void __fastcall TForml::SearchClick(TObject *Sender)
{
FindFirst ("c:\\Program Files\\bcb6\\bin*.*", faAnyFile, SearchRec);
Labell->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in size";

}

void __fastcall TForml::AgainClick(TObject *Sender)
{

if (FindNext (SearchRec) == 0)
Labell->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in
size";
else

FindClose (SearchRec);

}

Note In cross-platform applications, you should replace any hard-coded pathnames with
the correct pathname for the system or use environment variables (on the
Environment Variables page when you choose Tools | Environment Options) to
represent them.

4-8 Developer’s Guide

Note

Working with files

Renaming a file
To change a file name, use the RenameFile function:

extern PACKAGE bool __fastcall RenameFile(const AnsiString OldName, const AnsiString
NewName) ;

RenameFile changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns true. If it cannot rename
the file (for example, if a file called NewFileName already exists), RenameFile returns
false. For example:

if (!RenameFile("OLDNAME.TXT", "NEWNAME.TXT"))
ErrorMsg ("Error renaming file!");

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

RenameFile in the BaseCLX runtime library is a wrapper around the Windows API
MoveFile function, so MoveFile will not work across drives either.

File date-time routines

The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or -1 if the handle is invalid.

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, use an integer parameter which takes a file
handle. To get the file handle either

¢ Use the FileOpen or FileCreate function to create a new file or open an existing file.
Both FileOpen and FileCreate return the file handle.

¢ Instantiate TFileStream to create or open a file. Then use its Handle property. See
“Using file streams” on page 4-5 for more information.

Copying a file

The BaseCLX runtime library does not provide any routines for copying a file.
However, if you are writing Windows-only applications, you can directly call the
Windows API CopyFile function to copy a file. Like most of the runtime library file
routines, CopyFile takes a filename as a parameter, not a file handle. When copying a
file, be aware that the file attributes for the existing file are copied to the new file, but
the security attributes are not. CopyFile is also useful when moving files across drives
because neither the RenameFile function nor the Windows API MoveFile function can
rename or move files across drives. For more information, see the Microsoft
Windows online Help.

Using BaseCLX 49

Working with ini files and the system Registry

Working with ini files and the system Registry

Many applications use ini files to store configuration information. BaseCLX includes
two classes for working with ini files: TIniFile and TMemIniFile. Using ini files has the
advantage that they can be used in cross-platform applications and they are easy to
read and edit. For information on these classes, see “Using TIniFile and
TMemIniFile” on page 4-10 for more information.

Many Windows applications replace the use of ini files with the system Registry. The
Windows system Registry is a hierarchical database that acts as a centralized storage
space for configuration information. The VCL includes classes for working with the
system Registry. While these are technically not part of BaseCLX (because they are
only available on Windows), two of these classes, TRegistryIniFile and TRegistry, are
discussed here because of their similarity to the classes for working with ini files.

TRegistrylniFile is useful for cross-platform applications, because it shares a common
ancestor (TCustomlIniFile) with the classes that work with ini files. If you confine
yourself to the methods of the common ancestor (TCustominiFile) your application
can work on both applications with a minimum of conditional code. TRegistryIniFile
is discussed in “Using TRegistryIniFile” on page 4-11.

For applications that are not cross-platform, you can use the TRegistry class. The
properties and methods of TRegistry have names that correspond more directly to the
way the system Registry is organized, because it does not need to be compatible with
the classes for ini files. TRegistry is discussed in “Using TRegistry” on page 4-12.

Using TIniFile and TMeminiFile

The ini file format is still popular, many configuration files (such as the DSK Desktop
settings file) are in this format. This format is especially useful in cross-platform
applications, where you can’t always count on a system Registry for storing
configuration information. BaseCLX provides two classes, TIniFile and TMemIniFile,
to make reading and writing ini files very easy.

On Linux, TMemIniFile and TIniFile are identical. On Windows, TIniFile works
directly with the ini file on disk while TMemIniFile buffers all changes in memory and
does not write them to disk until you call the UpdateFile method.

When you instantiate the TIniFile or TMemIniFile object, you pass the name of the ini
file as a parameter to the constructor. If the file does not exist, it is automatically
created. You are then free to read values using the various read methods, such as
ReadString, ReadDate, ReadInteger, or ReadBool. Alternatively, if you want to read an
entire section of the ini file, you can use the ReadSection method. Similarly, you can
write values using methods such as WriteBool, Writelnteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a
form's constructor and writing values in the OnClose event handler.

__fastcall TForml::TForml (TComponent *Owner) : TForm(Owner)

{
TIniFile *ini;
ini = new TIniFile(ChangeFileExt (Application->ExeName, ".INI"));

4-10 Developer’s Guide

Working with ini files and the system Registry

Top = 1ini->ReadInteger("Form", "Top", 100);
Left = ini->ReadInteger("Form", "Left", 100);
Caption = 1ini->ReadString("Form", "Caption",
"Default Caption");
ini->ReadBool ("Form", "InitMax", false) ?
WindowState = wsMaximized :
WindowState = wsNormal;

delete ini;
}

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)
{

TIniFile *ini;

ini = new TIniFile(ChangeFileExt (Application->ExeName, ".INI"));

ini->WriteInteger("Form", "Top", Top);

ini->WriteInteger ("Form", "Left", Left);

ini->WriteString ("Form", "Caption", Caption);

ini->WriteBool ("Form", "InitMax",

WindowState == wsMaximized);

delete ini;
}

Each of the Read routines takes three parameters. The first parameter identifies the
section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.
Just as the Read methods gracefully handle the case when a section or value does not
exist, the Write routines create the section and/or value if they do not exist. The
example code creates an ini file the first time it is run that looks like this:

[Form]

Top=185

Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form
is created and written back out in the OnClose event.

Using TRegistrylniFile

Many 32-bit Windows applications store their information in the system Registry
instead of ini files because the Registry is hierarchical and doesn't suffer from the size
limitations of ini files. If you are accustomed to using ini files and want to move your
configuration information to the Registry instead, you can use the TRegistrylniFile
class. You may also want to use TRegistrylniFile in cross-platform applications if you
want to use the system Registry on Windows and an ini file on Linux. You can write
most of your application so that it uses the TCustomIniFile type. You need only
conditionalize the code that creates an instance of TRegistryIniFile (on Windows) or
TMemIniFile (on Linux) and assigns it to the TCustomIniFile your application uses.

TRegistrylniFile makes Registry entries look like ini file entries. All the methods from
TIniFile and TMemIniFile (read and write) exist in TRegistrylniFile.

Using BaseCLX 4-11

Working with lists

When you construct a TRegistryIniFile object, the parameter you pass to the
constructor (corresponding to the filename for an IniFile or TMemlIniFile object)
becomes a key value under the user key in the registry. All sections and values
branch from that root. TRegistryIniFile simplifies the Registry interface considerably,
so you may want to use it instead of the TRegistry component even if you aren't
porting existing code or writing a cross-platform application.

Using TRegistry

If you are writing a Windows-only application and are comfortable with the
structure of the system Registry, you can use TRegistry. Unlike TRegistrylniFile, which
uses the same properties and methods of other ini file components, the properties
and methods of TRegistry correspond more directly to the structure of the system
Registry. For example, TRegistry lets you specify both the root key and subkey, while
TRegistry assumes HKEY_CURRENT_USER as a root key. In addition to methods for
opening, closing, saving, moving, copying, and deleting keys, TRegistry lets you
specify the access level you want to use.

Note TRegistry is not available for cross-platform programming.

The following example retrieves a value from a registry entry:

#include <Registry.hpp>

AnsiString GetRegistryValue(AnsiString KeyName)
{
AnsiString S;
TRegistry *Registry = new TRegistry(KEY_READ);
try
{
Registry->RootKey = HKEY_LOCAL_MACHINE;
// False because we do not want to create it if it doesn’t exist
Registry->OpenKey (KeyName, false) ;
S = Registry->ReadString ("VALUEL");
}
__finally
{
delete Registry;
}

return S;

Working with lists

BaseCLX includes many classes that represents lists or collections of items. They vary
depending on the types of items they contain, what operations they support, and
whether they are persistent.

4-12 Developer’s Guide

Working with lists

The following table lists various list classes, and indicates the types of items they
contain:

Table4.5 Classes for managing lists

Object Maintains

TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TClassList A list of class references (metaclasses)

TInterfaceList A list of interface pointers.

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items.

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

Common list operations

Although the various list classes contain different types of items and have different
ancestries, most of them share a common set of methods for adding, deleting,
rearranging, and accessing the items in the list.

Adding list items

Most list classes have an Add method, which lets you add an item to the end of the list
(if it is not sorted) or to its appropriate position (if the list is sorted). Typically, the
Add method takes as a parameter the item you are adding to the list and returns the
position in the list where the item was added. In the case of bucket lists (TBucketList
and TObjectBucketList), Add takes not only the item to add, but also a datum you can
associate with that item. In the case of collections, Add takes no parameters, but
creates a new item that it adds. The Add method on collections returns the item it
added, so that you can assign values to the new item’s properties.

Some list classes have an Insert method in addition to the Add method. Insert works
the same way as the Add method, but has an additional parameter that lets you
specify the position in the list where you want the new item to appear. If a class has
an Add method, it also has an Insert method unless the position of items is
predetermined For example, you can’t use Insert with sorted lists because items must
go in sort order, and you can’t use Insert with bucket lists because the hash algorithm
determines the item position.

Using BaseCLX 4-13

Working with lists

The only classes that do not have an Add method are the ordered lists. Ordered lists
are queues and stacks. To add items to an ordered list, use the Push method instead.
Push, like Add, takes an item as a parameter and inserts it in the correct position.

Deleting list items

To delete a single item from one of the list classes, use either the Delete method or the
Remove method. Delete takes a single parameter, the index of the item to remove.
Remove also takes a single parameter, but that parameter is a reference to the item to
remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of
using a Delete or Remove method, you remove an item from an ordered list by calling
its Pop method. Pop takes no arguments, because there is only one item that can be
removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is
available for all lists except ordered lists.

Accessing list items

All list classes (except TThreadList and the ordered lists) have a property that lets you
access the items in the list. Typically, this property is called Items. For string lists, the
property is called Strings, and for bucket lists it is called Data. The Items, Strings, or
Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the
list, the LockList method returns a TList object that you can use to access the items.

Ordered lists only let you access the “top” item of the list. You can obtain a reference
to this item by calling the Peek method.

Rearranging list items

Some list classes have methods that let you rearrange the items in the list. Some have
an Exchange method, that swaps the position of two items. Some have a Move method
that lets you move an item to a specified location. Some have a Sort method that lets
you sort the items in the list.

To see what methods are available, check the Online help for the list class you are
using.

Persistent lists

Persistent lists can be saved to a form file. Because of this, they are often used as the
type of a published property on a component. You can add items to the list at design
time, and those items are saved with the object so that they are there when the
component that uses them is loaded into memory at runtime. There are two main
types of persistent lists: string lists and collections.

4-14 Developer’s Guide

Working with string lists

Examples of string lists include TStringList and THashedStringList. String lists, as the
name implies, contain strings. They provide special support for strings of the form
Name=Value, so that you can look up the value associated with a name. In addition,
most string lists let you associate an object with each string in the list. String lists are
described in more detail in “Working with string lists” on page 4-15.

Collections descend from the class TCollection. Each TCollection descendant is
specialized to manage a specific class of items, where that class descends from
TCollectionltem. Collections support many of the common list operations. All
collections are designed to be the type of a published property, and many can not
function independently of the object that uses them to implement on of its properties.
At design time, the property whose value is a collection can use the collection editor
to let you add, remove, and rearrange items. The collection editor provides a
common user interface for manipulating collections.

Working with string lists

One of the most commonly used types of list is a list of character strings. Examples
include items in a combo box, lines in a memo, names of fonts, and names of rows
and columns in a string grid. BaseCLX provides a common interface to any list of
strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods
introduced by TStrings, and introduces properties, events, and methods to

* Sort the strings in the list.
¢ Prohibit duplicate strings in sorted lists.
* Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are a
TStrings descendant) and then use these lines as items in a combo box (also a TStrings
descendant).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

* Loading and saving string lists

¢ Creating a new string list

¢ Manipulating strings in a list

* Associating objects with a string list

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,

Using BaseCLX 4-15

Working with string lists

create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the WIN.INI file into a memo field and makes
a backup copy called WIN.BAK.

void __fastcall EditWinIni()

{
AnsiString FileName = "C:\\WINDOWS\\WIN.INI";// set the file name
Forml->Memol->Lines->LoadFromFile (FileName); // load from file
Forml->Memol->Lines->SaveToFile (ChangeFileExt (FileName, ".BAK")); // save to backup

}

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists

If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...__finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...__finally block, use the string list.
3 In the _ finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

void __fastcall TForml::ButtonClickl (TObject *Sender)

{
TStringList *TempList = new TStringList; // declare the list
try(
//use the string list
}
__finally{
delete TempList; // destroy the list object
}
}

Long-term string lists

If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

4-16 Developer’s Guide

3

Working with string lists
In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

Write a constructor for the main form that executes before the form appears. It
should create a string list and assign it to the field you declared in the first step.

Write an event handler that frees the string list for the form’s OnClose event.

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

#include <vcl.h>
#pragma hdrstop

#include "Unitl.h"

#pragma package (smart_init)
#pragma resource "*.dfm"
TForml *Forml;

__fastcall TForml::TForml (TComponent* Owner)
: TForm(Owner)
{
ClickList = new TStringList;

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)

{
ClickList->SaveToFile (ChangeFileExt (Application->ExeName, ".LOG"));//Save the list
delete ClickList;

void __fastcall TForml::FormMouseDown (TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int V)
{
TVarRec v[] = {X,Y};
ClickList->Add(Format ("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list
}

Manipulating strings in a list

Operations commonly performed on string lists include:

Counting the strings in a list

Accessing a particular string

Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list

Moving a string within a list

Deleting a string from a list

Copying a complete string list

Using BaseCLX 4-17

Working with string lists

Counting the strings in a list

The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string

The Strings array property contains the strings in the list, referenced by a zero-based
index.

StringList1->Strings[0] = “This is the first string.”;

Locating items in a string list

To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns -1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if (FileListBoxl->Items->IndexOf ("WIN.INI") > -1) ...

lterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count — 1.
This example converts each string in a list box to uppercase characters.

void __fastcall TForml::ButtonlClick(TObject *Sender)
{

for (int 1 = 0; 1 < ListBoxl->Items->Count; 1++)
ListBoxl->Items->Strings[i] = UpperCase(ListBoxl->Items->Strings[i]);

}

Adding a string to a list

To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

StringListl->Insert (2, "Three");
To append the strings from one list onto another, call AddStrings:
StringListl->AddStrings (StringList2); // append the strings from StringList2 to StringListl

Moving a string within a list

To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject->Move (2, 4);

4-18 Developer’s Guide

Working with strings

Deleting a string from a list

To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

This example uses IndexOf and Delete to find and delete a string:

int BIndex = ListBoxl->Items->IndexOf ("bureaucracy");
if (BIndex > -1)
ListBoxl->Items->Delete(BIndex);

Copying a complete string list

You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memol->Lines->Assign(ComboBox1->Item)s; //overwrites original strings

copies the lines from a combo box into a memo (overwriting the memo), while
Memol->Lines->AddStrings (ComboBox1->Itens);//appends strings to end

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringListl = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list

In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Working with strings

The BaseCLX runtime library provides many specialized string-handling routines
specific to a string type. These are routines for wide strings, AnsiStrings, and null-
terminated strings (char *). Routines that deal with null-terminated strings use the

Using BaseCLX 4-19

Working with strings

null-termination to determine the length of the string. The following topics provide
an overview of many of the string-handling routines in the runtime library.

Wide character routines

Wide strings are used in a variety of situations. Some technologies, such as XML, use
wide strings as a native type. You may also choose to use wide strings because they
simplify some of the string-handling issues in applications that have multiple target
locales. Using a wide character encoding scheme has the advantage that you can
make many of the usual assumptions about strings that do not work for MBCS
systems. There is a direct relationship between the number of bytes in the string and
the number of characters in the string. You do not need to worry about cutting
characters in half or mistaking the second half of a character for the start of a different
character.

A disadvantage of working with wide characters is that most VCL controls represent
string values as single byte or MBCS strings. (CLX controls typically use wide
strings.) Translating between the wide character system and the MBCS system every
time you set a string property or read its value can require tremendous amounts of
extra code and slow your application down. However, you may want to translate
into wide characters for some special string processing algorithms that need to take
advantage of the 1:1 mapping between characters and WideChars.

The following functions convert between standard single-byte character strings (or
MBCS strings) and Unicode strings:

¢ StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString
WideCharToStrVar

In addition, the following functions translate between WideStrings and other
representations:

e UCS4StringToWideString
* WideStringToUCS45tring
e VarToWideStr

e VarToWideStrDef

The following routines work directly with WideStrings:

WideCompareStr
WideCompareText
WideSameStr

WideSameText
WideSameCaption (CLX only)
WideFmtStr

WideFormat

WideLowerCase
WideUpperCase

4-20 Developer’s Guide

Working with strings

Finally, some routines include overloads for working with wide strings:

UniqueString
Length

Trim
TrimLeft
TrimRight

Commonly used routines for AnsiStrings

The AnsiString handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether they use a
particular criterion in their calculations. The following tables list these routines by
these functional areas:

Comparison
Case conversion
Modification
Sub-string

Where appropriate, the tables also provide columns indicating whether a routine
satisfies the following criteria.

Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal
values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the Windows locale are
typically prefaced with Ansi (that is, AnsiXXX).

Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented as a mix of one- and
two-byte character codes, so the length in bytes does not necessarily correspond to
the length of the string. The routines that support MBCS parse one- and two-byte
characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
two-byte character. Be careful when using multi-byte characters not to truncate a
string by cutting a two-byte character in half. Do not pass characters as a
parameter to a function or procedure, since the size of a character cannot be
predetermined. Pass, instead, a pointer to a to a character or string. For more

Using BaseCLX 4-21

Working with strings

information about MBCS, see “Enabling application code” on page 16-2 of
Chapter 16, “Creating international applications.”

Table 4.6 String comparison routines

Routine Case-sensitive Uses locale settings ~ Supports MBCS
AnsiCompareStr yes yes yes
AnsiCompareText no yes yes
AnsiCompareFileName no yes yes
AnsiMatchStr yes yes yes
AnsiMatchText no yes yes
AnsiContainsStr yes yes yes
AnsiContainsText no yes yes
AnsiStartsStr yes yes yes
AnsiStartsText no yes yes
AnsiEndsStr yes yes yes
AnsiEndsText no yes yes
AnsilndexStr yes yes yes
AnsilndexText no yes yes
CompareStr yes no no
CompareText no no no
AnsiResemblesText no no no

Table 4.7 Case conversion routines

Routine Uses locale settings Supports MBCS
AnsiLowerCase yes yes
AnsiLowerCaseFileName yes yes
AnsiUpperCaseFileName yes yes
AnsiUpperCase yes yes
LowerCase no no
UpperCase no no

Note The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsilpperCaseFileName all use the Windows locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 4.8 String modification routines :

Routine Case-sensitive ~ Supports MBCS
AdjustLineBreaks NA yes
AnsiQuotedStr NA yes
AnsiReplaceStr yes yes
AnsiReplaceText no yes
StringReplace optional by flag yes

4-22 Developer’s Guide

Table 4.8 String modification routines (continued):

Routine Case-sensitive
ReverseString NA
StuffString NA
Trim NA
TrimLeft NA
TrimRight NA
WrapText NA

Working with strings

Supports MBCS

no
no

yes
yes
yes
yes

Table4.9 Sub-string routines

Routine
AnsiExtractQuotedStr
AnsiPos

IsDelimiter
IsPathDelimiter
LastDelimiter

LeftStr

RightStr

MidStr

QuotedStr

Case-sensitive

NA
yes
yes
yes
yes
NA
NA
NA

no

Supports MBCS
yes
yes
yes
yes
yes
no
no
no

no

Commonly used routines for null-terminated strings

The null-terminated string handling routines cover several functional areas. Within
these areas, some are used for the same purpose, the differences being whether or not
they use a particular criteria in their calculations. The following tables list these

routines by these functional areas:

Comparison
Case conversion
Modification
Sub-string

Copying

Where appropriate, the tables also provide columns indicating whether the routine is
case-sensitive, uses the current locale, and/or supports multi-byte character sets.

Table 410 Null-terminated string comparison routines

Routine Case-sensitive
AnsiStrComp yes
AnsiStrIComp no
AnsiStrLComp yes

Uses locale settings Supports MBCS

yes yes
yes yes
yes yes

Using BaseCLX 4-23

Working with strings

Table 4.10 Null-terminated string comparison routines (continued)

Routine Case-sensitive
AnsiStrLIComp no
StrComp yes
StrIComp no
StrLComp yes
StrLIComp no

Uses locale settings
yes
no
no
no

no

Supports MBCS

yes
no
no
no

no

Table 4.11 Case conversion routines for null-terminated strings

Routine Uses locale settings Supports MBCS
AnsiStrLower yes yes
AnsiStrUpper yes yes
StrLower no no
StrUpper no no

Table 4.12 String modification routines

Routine

StrCat
StrLCat

Table 4.13 Sub-string routines

Routine Case-sensitive
AnsiStrPos yes
AnsiStrScan yes
AnsiStrRScan yes
StrPos yes
StrScan yes
StrRScan yes

Supports MBCS

yes
yes
yes
no
no

no

Table 4.14 String copying routines

Routine
StrCopy
StrLCopy
StrECopy
StrMove
StrPCopy
StrPLCopy

4-24 Developer’s Guide

Printing

Printing

Technically speaking, the TPrinter class does not belong to BaseCLX because there
are two separate versions, one for the VCL (in the Printers unit) and one for CLX (in
the QPrinters unit). The VCL TPrinter object encapsulates details of Windows
printers. The CLX TPrinter object is a paint device that paints on a printer. It
generates postscript and sends that to lpr, Ip, or another print command. Both
versions of TPrinter, however, are extremely similar.

To get a list of installed and available printers, use the Printers property. Both printer
objects use a TCanvas (which is identical to the form's TCanvas) which means that
anything that can be drawn on a form can be printed as well. To print an image, call
the BeginDoc method followed by whatever canvas graphics you want to print
(including text through the TextOut method) and send the job to the printer by calling
the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, include <Printers.hpp> in your unit file.

void __fastcall TForml::ButtonlClick(TObject *Sender)

{
TPrinter *Prntr = Printer();
TRect r = Rect (200,200, Prntr->PageWidth - 200, Prntr->PageHeight- 200);
Prntr->BeginDoc () ;
for(int 1 = 0; 1 < Memol->Lines->Count; 1++)

Prntr->Canvas->TextOut (200,200 + (1 *

Prntr->Canvas->TextHeight (Memol->Lines->Strings[i])),
Memol->Lines->Strings[i]);
Prntr->Canvas->Brush->Color = clBlack;
Prntr->Canvas->FrameRect (1) ;
Prntr->EndDoc () ;

}

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

Converting measurements

The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you're converting must be in the same conversion
family. For information on doing conversions, see the next section Performing
conversions and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily

Using BaseCLX 4-25

Converting measurements

functions. For information on extending conversion and conversion units, see the
section Adding new measurement types and refer to Convert in the online Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions

You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.
For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin = Convert (StrToFloat (Editl->Text), tuFahrenheit, tuKelvin);

Performing complex conversions

You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:
double nKPL = Convert (StrToFloat (Editl.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you're converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Convert raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

The StdConvs unit defines several families of TConvType values. See Conversion
family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the

4-26 Developer’s Guide

Convertingmeasurements

StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

Creating a simple conversion family and adding units

One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when
performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

Declare variables

First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

tConvFamily cbLongTime;

TConvType ltMonths;

TConvType ltYears;

TConvType ltDecades;

TConvType ltCenturies;

TConvType 1tMillennia;

Register the conversion family
Next, register the conversion family:

cbLongTime = RegisterConversionFamily (“Long Times”);

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units

Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for [tMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

Using BaseCLX 4-27

Converting measurements

Note

The code to register the measurement units is shown here:

ltMonths = RegisterConversionType (cbLongTime, "Months”,1/12);
1tYears = RegisterConversionType (cbLongTime, "Years”,1);

1tDecades = RegisterConversionType (cbLongTime, "Decades”,10);
ltCenturies = RegisterConversionType (cbLongTime, "Centuries”,100);
ltMillennia = RegisterConversionType (cbLongTime, "Millennia”,1000);

Use the new units

You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,
Convert (StrToFloat (Edit1->Text), tuMonths, tuMillennia) ;
you can now use this one for greater accuracy:

Convert (StrToFloat (Edit1->Text),ltMonths,1tMillennia);

Using a conversion function

For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which is translated from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units.

Declare variables

First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

TConvFamily chTemperature;

TConvType tuCelsius;

TConvType tuKelvin;

TConvType tuFahrenheit;

The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature = RegisterConversionFamily (“Temperature”);

4-28 Developer’s Guide

Convertingmeasurements

Register the base unit

Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius = RegisterConversionType (chTemperature,”Celsius”,1);

Write methods to convert to and from the base unit

You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are translated from the StdConvs unit:

double __fastcall FahrenheitToCelsius(const double AValue)
{

return (((AValue - 32) * 5) / 9);
}

double __fastcall CelsiusToFahrenheit (const double AValue)

{
return (((AValue * 9) / 5) + 32);

}

double __fastcall KelvinToCelsius(const double AValue)
{

return (AValue - 273.15);
}

double __fastcall CelsiusToKelvin(const double AValue)

{
return (AValue + 273.15);

}

Register the other units

Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

The code to register the other units in the family is shown here:

tuKelvin = RegisterConversionType (cbTemperature, “Kelvin”, KelvinToCelsius,
CelsiusToKelvin);

tuFahrenheit = RegisterConversionType (cbTemperature, “Fahrenheit”, FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the chTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert (StrToFloat (Edit1->Text), tuFahrenheit, tuKelvin);

Using BaseCLX 4-29

Converting measurements

Using a class to manage conversions

You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

* The conversion must round to a currency-specific number of digits.

* The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

double __fastcall FromEuro(const double AValue, const double Factor, TRoundToRange FRound)
{

return (RoundTo (AValue * Factor, FRound));
}

double __fastcall ToEuro(const double AValue, const double Factor)

{
return (AValue / Factor);
}

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Creating the conversion class

The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a
conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class. This is shown in the EuroConv example in
the demos\Convertlt directory (see euroconv.pas):

class PASCALIMPLEMENTATION TConvTypeEuroFactor : public Convutils::TConvTypeFactor
{
private:
TRoundToRange FRound;
public:
__fastcall TConvTypeEuroFactor (const TConvFamily AConvFamily,
const AnsiString ADescription, const double AFactor, comst TRoundToRange ARound);
TConvTypeFactor (AConvFamily, ADescription, AFactor);

4-30 Developer’s Guide

Convertingmeasurements

virtual double ToCommon(const double AValue);
virtual double FromCommon (const double AValue);
}

The constructor assigns values to those private members:
__fastcall TConvTypeEuroFactor::TConvTypeEuroFactor (const TConvFamily AConvFamily,
const AnsiString ADescription, const double AFactor, const TRoundToRange ARound) :
TConvTypeFactor (AConvFamily, ADescription, AFactor);
{
FRound = ARound;
}

The two conversion functions simply use these private members:

virtual double TConvTypeEuroFactor::ToCommon (const double AValue)
{

return (RoundTo(AValue * Factor, FRound));
}

virtual double TConvTypeEuroFactor::ToCommon (const double AValue)
{

return (AValue / Factor);
}

Declare variables

Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

TConvFamily cbEuro;

TConvType euEUR; // EU euro

TConvType euBEF; // Belgian francs
TConvType euDEM; // German marks
TConvType euGRD; // Greek drachmas
TConvType euESP; // Spanish pesetas
TConvType euFFR; // French francs
TConvType eulEP; // Irish pounds
TConvType eulTL; // Italian lire
TConvType eulUF; // Luxembourg francs
TConvType eulNLG; // Dutch guilders
TConvType euATS; // Austrian schillings
TConvType euPTE; // Protuguese escudos
TConvType euFIM; // Finnish marks

Register the conversion family and the other units

Now you are ready to register the conversion family and the European monetary
units, using your new conversion class. Register the conversion family the same way
you registered the other conversion families:

cbEuro = RegisterConversionFamily (“European currency”);

Using BaseCLX 4-31

Converting measurements

To register each conversion type, create an instance of the conversion class that
reflects the factor and rounding properties of that currency, and call the
RegisterConversionType method:

TConvTypeInfo *pInfo = new TConvTypeEuroFactor (cbEuro, “EUEuro”, 1.0, -2);
if (!RegisterConversionType(pInfo, euEUR))
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “BelgianFrancs”, 40.3399, 0);
if (!RegisterConversionType(pInfo, euBEF))
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “GermanMarks”, 1.95583, -2);
if (!RegisterConversionType(pInfo, euDEM))
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “GreekDrachmas”, 340.75, 0);
if (!RegisterConversionType(pInfo, euGRD)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “SpanishPesetas”, 166.386, 0);
if (!RegisterConversionType(pInfo, euESP)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “FrenchFrancs”, 6.55957, -2);
if (!RegisterConversionType(pInfo, euFFR)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “IrishPounds”, 0.787564, -2);
if (!RegisterConversionType(pInfo, eulEP)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “ItalianLire”, 1936.27, 0);
if (!RegisterConversionType(pInfo, eulITL)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “LuxembourgFrancs”, 40.3399, -2);
if (!RegisterConversionType(pInfo, euLUF)
delete plInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “DutchGuilders”, 2.20371, -2);
if (!RegisterConversionType (pInfo, euNLG)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “AutstrianSchillings”, 13.7603, -2);
if (!RegisterConversionType(pInfo, euATS)
delete plInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “PortugueseEscudos”, 200.482, -2);
if (!RegisterConversionType(pInfo, euPTE)
delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “FinnishMarks”, 5.94573, 0);
if (!RegisterConversionType(pInfo, euFIM)
delete plInfo;

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2->Text = FloatToStr (Convert (StrToFloat (Editl->Text), euITL, euDEM));

4-32 Developer’s Guide

Creating drawing spaces

Creating drawing spaces

The TCanvas class encapsulates a Windows device context in the VCL and a paint
device (Qt painter) in CLX. It handles all drawing for both forms, visual containers
(such as panels) and the printer object (see “Printing” on page 4-25). Using the canvas
object, you no longer have to worry about allocating pens, brushes, palettes, and so
on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
Canvas->Pen->Color = clBlue;
Canvas->MoveTo(10, 10);
Canvas->LineTo(100, 100);
Canvas->Brush->Color = clBtnFace;
Canvas->Font->Name = "Arial";
Canvas->TextOut (Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line");

}

In Windows applications, the TCanvas object also protects you against common
Windows graphics errors, such as restoring device contexts, pens, brushes, and so on
to the value they had before the drawing operation. TCanuvas is used everywhere in
C++Builder that drawing is required or possible, and makes drawing graphics both
fail-safe and easy.

See TCanuvas in the online help reference for a complete listing of properties and
methods.

Using BaseCLX 4-33

4-34 Developer’s Guide

Working with components

Many components are provided in the integrated development environment (IDE)
on the Component palette. You select components from the Component palette and
drop them onto a form or data module. You design the application’s user interface by
arranging the visual components such as buttons and list boxes on a form. You can
also place nonvisual components such as data access components on either a form or
a data module.

At first glance, C++Builder’s components appear to be just like any other C++
classes. But there are differences between components in C++Builder and the
standard C++ class hierarchies that most C++ programmers work with. Some
differences are described here:

¢ All C++Builder components descend from TComponent.

* Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

¢ Components can only be allocated on the heap, not on the stack (that is, they must
be created with the new operator).

* Properties of components intrinsically contain runtime type information.

¢ Components can be added to the Component palette in the C++Builder user
interface and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard C++ classes. For example, consider the use of a dialog containing a push
button. In a C++ Windows program developed using VCL components, when a user
clicks on the button, the system generates a WM_LBUTTONDOWN message. The
program must catch this message (typically in a switch statement, a message map, or
a response table) and dispatch it to a routine that will execute in response to the
message.

Working with components 5-1

Setting component properties

Most Windows messages (VCL) or system events (CLX) are handled by C++Builder
components. When you want to respond to a message, you only need to provide an
event handler.

Chapter 8, “Developing the application user interface,” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Setting component properties

To set published properties at design time, you can use the Object Inspector and, in
some cases, special property editors. To set properties at runtime, assign their values
in your application source code.

For information about the properties of each component, see the online Help.

Setting properties at design time

When you select a component on a form at design time, the Object Inspector displays
its published properties and (when appropriate) allows you to edit them. Use the Tab
key to toggle between the left-hand Property column and the right-hand Value
column. When the cursor is in the Property column, you can navigate to any property
by typing the first letters of its name. For properties of Boolean or enumerated types,
you can choose values from a drop-down list or toggle their settings by double-
clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+" when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-" hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In addition,
changes to the source code, such as renaming an event handler method in a form
class declaration, is immediately reflected in the Object Inspector.

Using property editors

Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object

5-2 Developer’s Guide

Calling methods

Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

Setting properties at runtime

Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Forml->Caption = MyString;

Calling methods

Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGridl->Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
Repaint;

}

Working with events and event handlers

In C++Builder, almost all the code you write is executed, directly or indirectly, in
response to events. An event is a special kind of property that represents a runtime
occurrence, often a user action. The code that responds directly to an event—called
an event handler—is a method of an object. The sections that follow show how to:

Generate a new event handler.

Generate a handler for a component’s default event.
Locate event handlers.

Associate an event with an existing event handler.
Associate menu events with event handlers.

Delete event handlers.

Working with components 5-3

Working with events and event handlers

Generating a new event handler

C++Builder can generate skeleton event handlers for forms and other components.
To create an event handler,

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctri+Enter.

Type the code that you want to execute when the event occurs.

Generating a handler for a component’s default event

Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this
generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
them in the Form Designer. For example, many components open a default property
editor or other dialog when they are double-clicked at design time.

Locating event handlers

If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the
component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor at the beginning of the event-
handler body.

Associating an event with an existing event handler

You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

5-4 Developer’s Guide

Working with events and event handlers

To associate an event with an existing event handler,
1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The previous procedure is an easy way to reuse event handlers. Action lists and in the
VCL, action bands, however, provide powerful tools for centrally organizing the code
that responds to user commands. Action lists can be used in cross-platform
applications, whereas action bands cannot. For more information about action lists
and action bands, see “Organizing actions for toolbars and menus” on page 8-16.

Using the Sender parameter

In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter.

Displaying and coding shared events

When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

Associating menu events with event handlers

The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This section explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 8-29.

To create an event handler for a menu item,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. C++Builder generates an
event handler in the Code editor.

Working with components 5-5

Cross-platform and non-cross-platform components

4 Type the code that you want to execute when the user selects the menu command.
To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

Deleting event handlers

When you delete a component from a form using the Form Designer, C++Builder
removes the component from the form’s type declaration. It does not, however,
delete any associated methods from the unit file, since these methods may still be
called by other components on the form. You can manually delete a method—such as
an event handler—but if you do so, be sure to delete both the method’s forward
declaration and its implementation; otherwise you'll get a compiler error when you
build your project.

Cross-platform and non-cross-platform components

The Component palette contains a selection of components that handle a wide
variety of programming tasks. The components are arranged in pages according to
their purpose and functionality. For example, commonly used components such as
those to create menus, edit boxes, or buttons are located on the Standard page. Which
pages appear in the default configuration depends on the edition of the product you
are running.

Table 3.3 lists typical default pages and components available for creating
applications, including those that are not cross-platform. You can use all CLX
components in both Windows and Linux applications. You can use some VCL-
specific components in Windows-only CLX applications; however, the applications
will not be cross-platform unless you isolate these portions of the code.

5-6 Developer’s Guide

Cross-platform and non-cross-platform components

Table 5.1 Component palette pages

Page name Description Cross-platform?
Standard Standard controls, menus Yes
Additional Specialized controls Yes, except ApplicationEvents,

ActionManager, ActionMain-
MenuBar, ActionToolBar, and
CustomizeDlg. LCDNumber is in

CLX only.
Win32 (VCL)/ Windows common controls Many of the same components on the
Common Win32 page are on the Common
Controls (CLX) Controls page that appears when cre-
ating a CLX application.

RichEdit, UpDown, HotKey, Ani-
mate, DataTimePicker, MonthCalen-
dar, Coolbar, PageScroller, and
ComboBoxEx are in the VCL only.

TextBrowser, TextViewer, Icon-
Viewer, and SpinEdit are in CLX

only.

System Components and controls for system- No, except for Timer and PaintBox,
level access, including timers, multime- which are on the Additional page
dia, and DDE. when creating a CLX application.

Data Access Components for working with database Yes, except for XMLTransform,
data that are not tied to any particular ~ XMLTransformProvider, and XML-
data access mechanism. TransformClient.

Data Controls Visual, data-aware controls. Yes, except for DBRichEdit,

DBCtrlGrid, and DBChart.
dbExpress Database controls that use dbExpress,a Yes
cross-platform, database-independent
layer that provides methods for dynamic
SQL processing. It defines a common
interface for accessing SQL servers.

DataSnap Components used for creating multi- No
tiered database applications.

BDE Components that provide data access No
through the Borland Database Engine.

ADO Components that provide data access No
through the ADO framework.

InterBase Components that provide direct access ~ Yes
to the InterBase database.

InterBaseAdmin Components that access InterBase Ser- ~ Yes

vices API calls.

InternetExpress ~ Components that are simultaneouslya No
Web server application and the client of
a multi-tiered database application.

Internet Components for Internet communication No
protocols and Web applications.

Working with components 5-7

Cross-platform and non-cross-platform components

Table 5.1 Component palette pages (continued)

Page name Description Cross-platform?
WebSnap Components for building Web server No
applications.
FastNet NetMasters Internet controls. No
QReport QuickReport components for creating No
embedded reports.
Dialogs Commonly used dialog boxes. Yes, except for OpenPictureDialog,
SavePictureDialog, PrintDialog, and
PrinterSetupDialog.
Win 3.1 Old style Win 3.1 components. No
Samples Sample custom components. No
ActiveX Sample ActiveX controls; see Microsoft No
documentation (msdn.microsoft.com).
COM+ Component for handling COM+ events. No
WebServices Components for writing applications No
that implement or use SOAP-based Web
Services.
Servers COM Server examples for Microsoft No
Excel, Word, and so on (see Microsoft
MSDN documentation).
Indy Clients Cross-platform Internet components for Yes

the client (open source Winshoes Inter-
net components).

Indy Servers Cross-platform Internet components for Yes
the server (open source Winshoes Inter-
net components).

Indy Misc Additional cross-platform Internet com- Yes
ponents (open source Winshoes Internet
components).

You can add, remove, and rearrange components on the palette, and you can create
component templates and frames that group several components.

The online Help provides information about the components on the Component
palette. Some of the components on the ActiveX, Servers, and Samples pages,
however, are provided as examples only and are not documented.

For more information on the differences between the VCL and CLX, see Chapter 14,
“Developing cross-platform applications.”

Adding custom components to the Component palette

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a custom component,
see Part V, “Creating custom components.” To install an existing component, see
“Installing component packages” on page 15-5.

5-8 Developer’s Guide

Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag and drop in controls

Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view— into another.

Starting a drag operation

Accepting dragged items

Dropping items

Ending a drag operation

Customizing drag and drop with a drag object
Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and an integer parameter called Threshold.
If you pass true for Immediate, dragging begins immediately. If you pass false,
dragging does not begin until the user moves the mouse the number of pixels
specified by Threshold. If Threshold is -1, a default value is used. Calling

BeginDrag (false, -1);

Working with controls 6-1

Implementing drag and drop in controls

allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.
void __fastcall TFMForm::FileListBoxIMouseDown (TObject *Sender,
TMouseButton Button, TShiftState Shift, imt X, int V)
{
if (Button == mbLeft)// drag only if left button pressed
{
TFileListBox *pLB = (TFileListBox *)Sender; // cast to TFileListBox
if (pLB->ItemAtPos(Point (X,Y), true) >= 0) // 1s there an item here?
pLB->BeginDrag (false, -1); // if so, drag it

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragQOver event.

The drag-over event has a parameter called Accept that the event handler can set to
true if it will accept the item. Accept changes the cursor type to an accept cursor or
not.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drag. In the following example, a directory tree view accepts
dragged items only if they come from a file list box.

void __fastcall TForml::TreeViewlDragOver (TObject *Sender, TObject *Source,
int X, int Y, TDragState State, bool &Accept)
{

if (Source->InheritsFrom(__classid(TFileListBox)))
Accept = true;

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components if an item is dropped.

6-2 Developer’s Guide

Implementing drag and drop in controls

In the following example, a directory tree view, accepting items dragged from a file
list box, responds by moving files to the directory on which they are dropped.

void __fastcall TForml::TreeViewlDragDrop(TObject *Sender, TObject *Source,
int X, int Y){
if (Source->InheritsFrom(__classid(TFileListBox)))
{
TTreeNode *pNode = TreeViewl->GetNodeAt (X,Y); // pNode is drop target
AnsiString NewFile = pNode->Text + AnsiString("//") +
ExtractFileName (FileListBoxl->FileName); // build file name for drop target
MoveFileEx (FileListBox1->FileName.c_str(), NewFile.c_str(),
MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED); // move the file

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the drag was initiated. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is null, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

void __fastcall TFMForm::FileListBoxl1EndDrag(TObject *Sender, TObject *Target, int X, int
Y)
if (Target)
FileListBoxl->Update();
}i

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx (VCL only) and override its virtual methods. Create the custom drag
object in the OnStartDrag event.

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

Working with controls 6-3

Implementing drag and dock in controls

TDragObjectEx descendants (VCL only) are freed automatically whereas descendants
of TDragObject are not. If you have TDragObject descendants that you are not
explicitly freeing, you can change them so they descend from TDragObjectEx instead
to prevent memory loss.

Drag objects let you drag items between a form implemented in the application’s
main executable file and a form implemented using a DLL, or between forms that are
implemented using different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property (VCL only).

Implementing drag and dock in controls

Note

Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

¢ Making a windowed control a docking site

Making a control a dockable child

Controlling how child controls are docked

Controlling how child controls are undocked

Controlling how child controls respond to drag-and-dock operations

Drag-and-dock properties are available in the VCL but not CLX.

Making a windowed control a docking site

To make a windowed control a docking site:
1 Set the DockSite property to true.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to true. When AutoSize is true, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

Making a control a dockable child

To make a control a dockable child:

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the

6-4 Developer’s Guide

Implementing drag and dock in controls

control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Setits DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is
dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

__property TGetSiteInfoEvent OnGetSiteInfo = {read=FOnGetSiteInfo, write=FOnGetSiteInfo};
typedef void __fastcall (__closure *TGetSiteInfoEvent) (System::TObject* Sender, TControl*
DockClient, Windows::TRect &InfluenceRect, const Windows::TPoint &MousePos, bool &CanDock);

OnGetSitelnfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSitelnfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to true. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to false.

__property TDockOverEvent OnDockOver = {read=FOnDockOver, write=FOnDockOver};
typedef void __fastcall (__closure *TDockOverEvent) (System::TObject* Sender,
TDragDockObject* Source, int X, int Y, TDragState State, bool &Accept);

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSitelnfo event handler (perhaps because
it is the wrong type of control), OnDockOuver does not occur.

__property TDockDropEvent OnDockDrop = {read=FOnDockDrop, write=FOnDockDrop};
typedef void __fastcall (__closure *TDockDropEvent) (System::TObject* Sender,
TDragDockObject* Source, int X, int Y);

Working with controls 6-5

Working with text in controls

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

__property TUnDockEvent OnUnDock = {read=FOnUnDock, write=FOnUnDock};
typedef void __fastcall (__closure *TUnDockEvent) (System::TObject* Sender, TControl* Client,
TWinControl* NewTarget, bool &Allow);

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls

The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

Setting text alignment

Adding scroll bars at runtime
Adding the clipboard object
Selecting text

Selecting all text

Cutting, copying, and pasting text
Deleting selected text

Disabling menu items

Providing a pop-up menu
Handling the OnPopup event

6-6 Developer’s Guide

Working with text in controls

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is true; if word wrapping is turned off, there is
no margin to align to.

For example, the following code from the RichEdit example sets the alignment
depending on which button was chosen:

switch((int)RichEdit1->Paragraph->Alignment)

{
case (: LeftAlign->Down = true; break;
case 1: RightAlign->Down = true; break;
case 2: CenterAlign->Down = true; break;

}

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

The following example attaches an OnClick event handler to a Character | WordWrap
menu item.

void __fastcall TEditForm::WordWraplClick(TObject *Sender)

{
Editor->WordWrap = ! (Editor->WordWrap); // toggle word wrapping
if (Editor->WordWrap)

Editor->ScrollBars = ssVertical; // wrapped requires only vertical
else
Editor->ScrollBars = ssBoth; // unwrapped can need both

WordWrapl->Checked = Editor->WordWrap; // check menu item to match property
}

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Working with controls 6-7

Working with text in controls

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. The Clipboard
object in C++Builder encapsulates a clipboard (such as the Windows Clipboard) and
includes methods for cutting, copying, and pasting text (and other formats, including
graphics). The Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application:
1 Select the unit that will use the clipboard.
2 In the form’s .h file, add

#include <vcl\Clipbrd.hpp>

Selecting text

For text in an edit control, before you can send any text to the clipboard, that text
must be selected. Highlighting of selected text is built into the edit components.
When the user selects text, it appears highlighted.

Table 6.1 lists properties commonly used to handle selected text.

Table 6.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.
SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of

an edit control’s text buffer.

Selecting all text

The SelectAll method selects the entire contents of an edit control, such as a rich edit
or memo component. This is especially useful when the component’s contents exceed
the visible area of the component. In most other cases, users select text with either
keystrokes or mouse dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example:

void __fastcall TMainForm::SelectAll (TObject *Sender)

{
RichEditl->SelectAll(); // select all text in RichEdit

}

6-8 Developer’s Guide

Working with text in controls

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 10-21 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit | Cut, Edit| Copy, and Edit | Paste commands, respectively:

void __fastcall TMainForm::EditCutClick(TObject* Sender)
{ RichEdit1->CutToClipboard();

void __fastcall TMainForm::EditCopyClick(TObject* Sender)
{ RichEdit1->CopyToClipboard();

void __fastcall TMainForm::EditPasteClick(TObject* Sender)
{ RichEdit1->PasteFromClipboard();

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

void __fastcall TMainForm::EditDeleteClick(TObject *Sender)
{

RichEdit1->ClearSelection();
}

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to false.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
// enable or disable the Paste menu item
Pastel->Enabled = Clipboard()->HasFormat (CF_TEXT);

Working with controls 6-9

Working with text in controls

bool HasSelection = (RichEditl->SelLength > 0); // true if text is selected
Cutl->Enabled = HasSelection; // enable menu items if HasSelection is true
Copyl->Enabled = HasSelection;
Deletel->Enabled = HasSelection;

}

The HasFormat method of the clipboard returns a Boolean value based on whether
the clipboard contains objects, text, or images of a particular format. By calling
HasFormat with the parameter CF_TEXT, you can determine whether the clipboard
contains any text, and enable or disable the Paste item as appropriate.

Chapter 10, “Working with graphics and multimedia” provides more information
about using the clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form:
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 6-9.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

6-10 Developer’'s Guide

Adding graphics to controls

To adjust menu items on a pop-up menu before displaying them:

1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 6-9 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
// enable or disable the Paste menu item
Pastel->Enabled = Clipboard()->HasFormat (CF_TEXT);

Paste2->Enabled = Pastel->Enabled; // add this line
bool HasSelection = (RichEditl->SelLength > 0); // true if text is selected
Cutl->Enabled = HasSelection; // enable menu items if HasSelection is true

Cut2->Enabled = HasSelection; // add this line
Copyl->Enabled = HasSelection;

Copy2->Enabled = HasSelection; // add this line
Deletel->Enabled = HasSelection;

Adding graphics to controls

Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 8-35.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in a list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control in C++Builder involves these steps:

1 Indicating that a control is owner-drawn.
2 Adding graphical objects to a string list.
3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and toolbars all receive events at
various stages in the drawing process without your having to set any properties.

Working with controls 6-11

Adding graphics to controls

These events have names such as “OnCustomDraw” or
“OnAdvancedCustomDraw.”

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 6.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Table 6.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height [bOwnerDrawFixed,
determined by the ItemHeight property. csOwnerDrawFixed

Variable Each item might have a different height, IbOwnerDrawVariable,
determined by the data at runtime. csOwnerDrawVariable

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Adding images to an application

An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you'll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.

2 Set their Name properties.

3 Set the Visible property for each image control to false.

4 Set the Picture property of each image to the desired bitmap using the Picture
editor from the Object Inspector.

The image controls are invisible when you run the application.

Adding images to a string list

Once you have graphical images in an application, you can associate them with the

strings in a string list. You can either add the objects at the same time as the strings,

or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

6-12 Developer’'s Guide

Adding graphics to controls

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid
drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

void __fastcall TFMForm::FormCreate(TObject *Sender)
{
int AddedIndex;
char DriveName[4] = "A:\\";
for (char Drive = 'A'; Drive <= 'Z'; Drive++) // try all possible drives
{
DriveName[0] = Drive;
switch (GetDriveType (DriveName))
{
case DRIVE_REMOVABLE:// add a list item
DriveName[1] = "\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject (DriveName,
Floppy->Picture->Graphic);

DriveName[1] = ':' // replace the colon
break;
case DRIVE_FIXED:// add a list item
DriveName[1] = '"\0'; // temporarily make drive letter into string

AddedIndex = DriveList->Items->AddObject (DriveName,
Fixed->Picture->Graphic);

DriveName[1] = ':' // replace the colon
break;
case DRIVE_REMOTE:// add a list item
DriveName[1] = "\0'; // temporarily make drive letter into string

AddedIndex = DriveList->Items->AddObject (DriveName,
Network->Picture->Graphic);

DriveName[l1] = ':' // replace the colon
break;
}
if ((int) (Drive - 'A') == getdisk()) // current drive?

DriveList->ItemIndex = AddedIndex; // then make that the current list item

Drawing owner-drawn items

When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, the control is no longer drawn on the
screen. Instead, the operating system generates events for each visible item in the
control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of IsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

Working with controls 6-13

Adding graphics to controls

Note

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, the operating system generates a measure-item event. The measure-
item event tells the application where the item appears on the control.

C++Builder determines the size of the item (generally, it is just large enough to
display the item’s text in the current font). Your application can handle the event and
change the rectangle chosen. For example, if you plan to substitute a bitmap for the
item’s text, change the rectangle to be the size of the bitmap. If you want a bitmap and
text, adjust the rectangle to be big enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureltem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
size of that item. The size is variable: the application can make it either smaller or
larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureltem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

void __fastcall TForml::ListBoxIMeasureItem(TWinControl *Control, int Index,
int &Height) // note that Height is passed by reference
{
int BitmapHeight = ((TBitmap *)ListBoxl->Items->Objects[Index])->Height + 2;
// make sure list item has enough room for bitmap (plus 2)
if (BitmapHeight > Height)
Height = BitmapHeight;
}

You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a whole or
subitems.

6-14 Developer’'s Guide

Adding graphics to controls
To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.
The names of events for owner drawing typically start with one of the following;:
* OnDraw, such as OnDrawltem or OnDrawCell
e OnCustomDraw, such as OnCustomDrawlItem
e OnAdvancedCustomDraw, such as OnAdvancedCustomDrawltem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawltem event
for the list box:

void __fastcall TForml::ListBoxIDrawItem(TWinControl *Control, int Index,
TRect &Rect, TOwnerDrawState State)

TBitmap *Bitmap = (TBitmap *)ListBoxl->Items->Objects[Index];

ListBoxl->Canvas->Draw(R.Left, R.Top + 2, Bitmap); // draw the bitmap

ListBoxl->Canvas->TextOut (R.Left + Bitmap->Width + 2, R.Top + 2,
ListBoxl->Items->Strings[Index]); // and write the text to its right

Working with controls 6-15

6-16 Developer’'s Guide

Building applications, components,
and libraries

This chapter provides an overview of how to use C++Builder to create applications,
libraries, and components.

Creating applications

The main use of C++Builder is designing and building the following types of
applications:

GUI applications

Console applications

Service applications (for Windows applications only)
Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run
from a console window. Service applications are run as Windows services. These
types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in
creating packages or dynamically linkable libraries. These applications produce
executable code without start-up code. Refer to “Creating packages and DLLs” on
page 7-10.

GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of

Building applications, components, and libraries 7-1

Creating applications

your program, and simple programs often consist of only an executable file. You can
extend the application by calling DLLs, packages, and other support files from the
executable.

C++Builder offers two application Ul models:

¢ Single document interface (SDI)
* Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

User interface models

Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter §,
“Developing the application user interface.”

SDI applications

To create a new SDI application:

1 Choose File | New | Other to bring up the New Items dialog.
2 Click on the Projects page and double-click SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so
C++Builder assumes that all new applications are SDI applications.

MDI applications

To create a new MDI application:

1 Choose File | New | Other to bring up the New Items dialog.

2 Click on the Projects page and double-click MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

7-2 Developer’s Guide

Creating applications

MDI applications often include a Window pop-up on the main menu that has items
such as Cascade and Tile for viewing multiple windows in various styles. When a
child window is minimized, its icon is located in the MDI parent form.

To summarize what you need to do to create the windows for the MDI application,

1 Create the main window form or MDI parent window. Set its FormStyle property
to fsMDIForm.

2 Create a menu for the main window that includes File | Open, File | Save, and
Window which has Cascade, Tile, and Arrange All items.

3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, project, and compilation options

Choose Project | Options to specify various options for your project. For more
information, see the online Help.

Setting default project options

To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

Programming templates

Programming templates are commonly used skeleton structures that you can add to
your source code and then fill in. Some standard code templates such as those for
array, class, and function declarations, and many statements, are included with
C++Builder.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

for (; i)
{
}

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Choose Tools | Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.
4

Type a name for the template after Shortcut name, enter a brief description of the
new template, and click OK.

Add the template code to the Code text box.
Click OK.

D o

Building applications, components, and libraries 7-3

Creating applications

Note

Console applications

Console applications are 32-bit programs that run without a graphical interface,
usually in a console window. These applications typically don’t require much user
input and perform a limited set of functions.

To create a new console application:

1 Choose File | New | Other and double-click Console Wizard from the New Items
dialog box.

2 In the Console Wizard dialog box, check the Console Application option, choose
the source type (C or C++) for the main module of the project, or specify a pre-
existing file that contains a main or winmain function, and click the OK button.

C++Builder then creates a project file for this type of source file and displays the
Code editor.

Using the VCL and CLX in console applications

When you create a new console application, the IDE does not create a new form.
Only the Code editor appears.

You can, however, use VCL and CLX objects in console applications. To do this, in
the Console Wizard you must indicate that you will be using the VCL or CLX (check
the Use VCL or Use CLX option). If you do not indicate in the wizard that you want
to use the VCL or CLX, you will not be able use any of the VCL or CLX classes in this
application later. Trying to do so will cause linker errors.

Console applications should handle all exceptions to prevent windows from
displaying a dialog during its execution.

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A Web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service:

1 Choose File | New | Other, and double-click Service Application in the New Items
dialog box. This adds a global variable named Application to your project, which is
of type TServiceApplication.

2 A Service window appears that corresponds to a service (TService). Implement the
service by setting its properties and event handlers in the Object Inspector.

3 You can add additional services to your service application by choosing File |
New | Other, and double-click Service in the New Items dialog box. Do not add
services to an application that is not a service application. While a TService object
can be added, the application will not generate the requisite events or make the
appropriate Windows calls on behalf of the service.

7-4 Developer’s Guide

Example

Creating applications

4 Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

This service has a TServerSocket whose port is set to 80. This is the default port for
Web browsers to make requests to Web servers and for Web servers to make
responses to Web browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one server listening on any given port, so if you have a Web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a Web browser on the local machine and for the address,
type 'localhost' (with no quotes). The browser will time out eventually, but you
should now have a file called Weblogxxx.log in the C:\Temp directory.

1 To create the example, choose File | New | Other and select Service Application
from the New Items dialog box. The Servicel window appears.

2 From the Internet page of the Component palette, add a ServerSocket component
to the service window (Servicel).

3 Add a private data member of type TMemoryStream to the TServicel class. The
header for your unit should now look like this:

#ifndef UnitlH
#define UnitlH

#include <SysUtils.hpp>
#include <Classes.hpp>
#include <Svclgr.hpp>

#include <ScktComp.hpp>

class TServicel : public TService
{
__published:// IDE-managed Components
TServerSocket *ServerSocketl;
private:// User declarations
TMemoryStream *Stream; // add this line here
public:// User declarations
__fastcall TServicel (TComponent* Owner);
PServiceController __fastcall GetServiceController(void);

friend void __stdcall ServiceController (unsigned CtrlCode);
}i

Building applications, components, and libraries 7-5

Creating applications

#endif

4 Select ServerSocketl, the component you added in step 1. In the Object Inspector,
double-click the OnClientRead event and add the following event handler:

void __fastcall TServicel::ServerSocketlClientRead(TObject *Sender,
TCustomWinSocket *Socket)
{
char *Buffer = NULL;
int len = Socket->ReceiveLength();
while (len > 0)
{
try
{
Buffer = (char *)malloc(len);
Socket->ReceiveBuf ((void *)Buffer, len);
Stream->Write (Buffer, len);
}
__finally
{
free(Buffer);
}
Stream->Seek (0, soFromBeginning);
AnsiString LogFile = "C:\\Temp\\WebLog";
LogFile = LogFile + IntToStr(ServiceThread->ThreadID) + ".log";
Stream->SaveToFile (LogFile);
}
}

5 Finally, select Servicel by clicking in the window’s client area (but not on the
ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

void __fastcall TServicel::ServicelExecute(TService *Sender)
{
Stream = new TMemoryStream();
try
{
ServerSocketl->Port = 80; // WWW port
ServerSocket1->Active = true;
while (!Terminated)
ServiceThread->ProcessRequests (true) ;
ServerSocket1->Active = false;
1
__finally
{
delete Stream;
}
}

7-6 Developer’s Guide

Note

Example

Creating applications

When writing your service application, you should be aware of:

¢ Service threads
¢ Service name properties
¢ Debugging service applications

Service applications are for Windows only.

Service threads

Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File | New | Other and double-click Service Application in the New Items
dialog. The Servicel window appears.

2 In you unit’s header file, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

class TSparkyThread : public TThread
{
private:
protected:
void __fastcall Execute();
public:
__fastcall TSparkyThread(bool CreateSuspended);
}i

3 In the .cpp file for your unit, create a global variable for a TSparkyThread instance:
TSparkyThread *SparkyThread;
4 Add the following code to the .cpp file for the TSparkyThread constructor:

__fastcall TSparkyThread::TSparkyThread (bool CreateSuspended)
: TThread(CreateSuspended)

{

}

Building applications, components, and libraries 7-7

Creating applications

5

Add the following code to the .cpp file for the TSparkyThread Execute method
(the thread function):

void __fastcall TSparkyThread::Execute()
{

while (!Terminated)
{
Beep() ;
Sleep(500);
}
}

Select the Service window (Servicel), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

void __fastcall TServicel::ServicelStart (TService *Sender, bool &Started)

{
SparkyThread = new TSparkyThread(false);
Started = true;

}

Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

void __fastcall TServicel::ServicelContinue(TService *Sender, bool &Continued)
{

SparkyThread->Resume() ;

Continued = true;

}

Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

void __fastcall TServicel::ServicelPause(TService *Sender, bool &Paused)
{

SparkyThread->Suspend() ;

Paused = true;

}

Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

void __fastcall TServicel::ServicelStop(TService *Sender, bool &Stopped)
{

SparkyThread->Terminate();

Stopped = true;
}

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties

The VCL provides classes for creating service applications on the Windows platform
(not available for cross-platform applications). These include TService and

7-8 Developer’s Guide

Creating applications

TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And